Intracellular uptake and inhibition of gene expression by PNAs and PNA-peptide conjugates

Kunihiro Kaihatsu, Kenneth E. Huffman, David R. Corey

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


Peptide nucleic acids (PNAs) offer a distinct option for silencing gene expression in mammalian cells. However, the full value of PNAs has not been realized, and the rules governing the recognition of cellular targets by PNAs remain obscure. Here we examine the uptake of PNAs and PNA - peptide conjugates by immortal and primary human cells and compare peptide-mediated and DNA/lipid-mediated delivery strategies. We find that both peptide-mediated and lipid-mediated delivery strategies promote entry of PNA and PNA - peptide conjugates into cells. Confocal microscopy reveals a punctate distribution of PNA and PNA - peptide conjugates regardless of the delivery strategy used. Peptide D(AAKK)4 and a peptide containing a nuclear localization sequence (NLS) promote the spontaneous delivery of antisense PNAs into cultured cells. The PNA - D(AAKK)4 conjugate inhibits expression of human caveolin 1 (hCav-1) in both HeLa and primary endothelial cells. DNA/lipid-mediated delivery requires less PNA, while peptide-mediated delivery is simpler and is less toxic to primary cells. The ability of PNA - peptide conjugates to enter primary and immortal human cells and inhibit gene expression supports the use of PNAs as antisense agents for investigating the roles of proteins in cells. Both DNA/lipid-mediated and peptide-mediated delivery strategies are efficient, but the compartmentalized localization of PNAs suggests that improving the cellular distribution may lead to increased efficacy.

Original languageEnglish (US)
Pages (from-to)14340-14347
Number of pages8
Issue number45
StatePublished - Nov 16 2004

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Intracellular uptake and inhibition of gene expression by PNAs and PNA-peptide conjugates'. Together they form a unique fingerprint.

Cite this