Intracardiac echocardiographic measurement of left ventricular volume

C. Ding, L. Rao, S. F. Nagueh, D. S. Khoury

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We tested the utility of intracardiac echocardiography (ICE) in measuring left ventricular (LV) volume. In 4 normal dogs, a 10-F percutaneous sheath was placed inside the LV along its major axis. An ICE catheter (9 F, 9 MHz) was then inserted through the sheath into the LV. The ICE catheter was pulled back in 1-mm intervals starting from the apex, and 2-D tomographic images were continuously acquired. Subsequently, the ICE catheter was replaced in the LV by a conductance catheter to measure single-beat volume signals. Stroke volume was determined by thermodilution for validation. All measurements were made in each dog while pacing the atrium at two different cycle lengths (range=300-500 ms). The endocardium was segmented in the ICE images throughout the cardiac cycle, and LV volume was computed by integrating multiple segments (range=55-70 mm). We found that ICE accurately reconstructed LV 3-D anatomy. Stroke volume by ICE was in excellent agreement with thermodilution (error=3.8±3.0%, r=0.99, n=8). Morphology of LV volume signals correlated well with instantaneous volume signals derived by conductance (r=0.93, n=8). In conclusion, ICE accurately reconstructs LV anatomy and volume throughout the cardiac cycle in the normal heart. This approach could facilitate interventional diagnostic and therapeutic procedures.

Original languageEnglish (US)
Title of host publicationAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Pages3662-3665
Number of pages4
Volume26 V
StatePublished - 2004
EventConference Proceedings - 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2004 - San Francisco, CA, United States
Duration: Sep 1 2004Sep 5 2004

Other

OtherConference Proceedings - 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2004
Country/TerritoryUnited States
CitySan Francisco, CA
Period9/1/049/5/04

Keywords

  • Echocardiography
  • Hemodynamics
  • Imaging

ASJC Scopus subject areas

  • Bioengineering

Fingerprint

Dive into the research topics of 'Intracardiac echocardiographic measurement of left ventricular volume'. Together they form a unique fingerprint.

Cite this