Influence of L-type Ca channel α2/δ-subunit on ionic and gating current in transiently transfected HEK 293 cells

R. Bangalore, G. Mehrke, K. Gingrich, F. Hofmann, R. S. Kass

Research output: Contribution to journalArticlepeer-review

90 Scopus citations


We have measured ionic and gating currents in human embryonic kidney (HEK 293) cells transiently transfected with cDNAs encoding subunits of the cardiac voltage-gated L-type Ca2+ channel. Robust recombinant ionic current and associated nonlinear charge movement could be measured over a broad voltage range without contamination by endogenous channel activity. Coexpression of the α2/δ-subunit along with α1- and β2-subunits speeded activation and deactivation kinetics and significantly increased the maximal conductance of ionic current. Charge movement was measured at voltages negative to the threshold for activation of ionic current, and gating charge could be immobilized at positive holding potentials that did not inactivate ionic current. The ratio of maximal ionic conductance to maximal charge moved remained the same in the absence or presence of the α2/δ-subunit. However, the maximal amount of charge moved was increased about twofold in the presence of the α2/δ-subunit. These results suggest that coexpression of the α2/δ-subunit enhances the expression of functional L-type channels and, in addition, provide evidence that most of the L-type channel-associated nonlinear charge movement is caused by transitions between nonconducting states of the channel protein that precede the open and inactivated states.

Original languageEnglish (US)
Pages (from-to)H1521-H1528
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Issue number5 39-5
StatePublished - 1996


  • charge movement
  • electrophysiology
  • heterologous expression
  • ion channels
  • molecular biology

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)


Dive into the research topics of 'Influence of L-type Ca channel α2/δ-subunit on ionic and gating current in transiently transfected HEK 293 cells'. Together they form a unique fingerprint.

Cite this