Abstract
Purpose: We developed a prototype magnetic tool for ureteroscopic extraction of magnetized stone particles. We compared its efficiency for retrieving magnetized calcium oxalate monohydrate stone particles with that of a conventional nitinol basket from the pelvi-collecting system of a bench top ureteroscopic simulator. Materials and Methods: Iron oxide microparticles were successfully bound to 1 to 1.5, 1.5 to 2 and 2 to 2.5 mm human calcium oxalate monohydrate stones. Several coated fragments of each size were implanted in the collecting system of a bench top ureteroscopic simulator. Five-minute timed stone extraction trials were performed for each fragment size using a back loaded 8Fr magnetic tool mounted on a 0.038-inch guidewire or a conventional basket. The median number of fragments retrieved per timed trial was compared for the magnetic tool vs the basket using the Mann-Whitney U test. Results: For 1 to 1.5 mm fragments the median number retrieved within 5 minutes was significantly higher for the prototype magnetic tool than for the nitinol basket (9.5 vs 3.5, p = 0.03). For 1.5 to 2 mm fragments the magnetic tool was more efficient but the difference in the number of fragments retrieved was not statistically significant (9.5 vs 4.5, p = 0.19). For 2 to 2.5 mm fragments there was no difference between the instruments in the number retrieved (6 per group, p = 1.0). Conclusions: The prototype magnetic tool improved the efficiency of retrieving stone particles rendered paramagnetic that were less than 2 mm but showed no advantage for larger fragments. This system has the potential to decrease the number of small retained fragments after ureteroscopic lithotripsy.
Original language | English (US) |
---|---|
Pages (from-to) | 648-652 |
Number of pages | 5 |
Journal | Journal of Urology |
Volume | 188 |
Issue number | 2 |
DOIs | |
State | Published - Aug 1 2012 |
Keywords
- calcium oxalate
- endoscopy
- instrumentation
- magnetics
- urinary calculi
ASJC Scopus subject areas
- Urology