Abstract
Background: The selective estrogen receptor modulator tamoxifen, in combination with the Cre-ERT2 fusion protein, has been one of the mainstream methods to induce genetic recombination and has found widespread application in lineage tracing studies. Methods & results: Here, we report that tamoxifen exposure at widely used concentrations remains detectable by mass-spectrometric analysis in adipose tissue after a washout period of 10 days. Surprisingly, its ability to maintain nuclear translocation of the Cre-ERT2 protein is preserved beyond 2 months of washout. Tamoxifen treatment acutely leads to transient lipoatrophy, followed by de novo adipogenesis that reconstitutes the original fat mass. In addition, we find a "synthetically lethal" phenotype for adipocytes when tamoxifen treatment is combined with adipocyte-specific loss-of-function mutants, such as an adipocyte-specific PPARγ knockout. This is observed to a lesser extent when alternative inducible approaches are employed. Conclusions: These findings highlight the potential for tamoxifen-induced adipogenesis, and the associated drawbacks of the use of tamoxifen in lineage tracing studies, explaining the discrepancy in lineage tracing results from different systems with temporal control of gene targeting.
Original language | English (US) |
---|---|
Pages (from-to) | 771-778 |
Number of pages | 8 |
Journal | Molecular Metabolism |
Volume | 4 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2015 |
Keywords
- Adipose tissue
- Cre recombinase
- Lineage tracing
- Tamoxifen
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology