TY - JOUR
T1 - Hyperspectral and multispectral imaging in digital and computational pathology
T2 - A systematic review [Invited]
AU - Ortega, Samuel
AU - Halicek, Martin
AU - Fabelo, Himar
AU - Callico, Gustavo M.
AU - Fei, Baowei
N1 - Funding Information:
This research was supported in part by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP190588 and the U.S. National Institutes of Health (NIH) grants (R01CA156775, R01CA204254, R01HL140325, and R21CA231911). This research was supported in part by the Canary Islands Government through the ACIISI (Canarian Agency for Research, Innovation and the Information Society), ITHACA project under Grant Agreement ProID2017010164 and by the Spanish Government through PLATINO project (TEC2017-86722-C4-4-R). This work was completed while Samuel Ortega was beneficiary of a pre-doctoral grant given by the "Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informaci?n (ACIISI)" of the "Conserjer?a de Econom?a, Industria, Comercio y Conocimiento" of the "Gobierno de Canarias", which is part-financed by the European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)).
Funding Information:
This research was supported in part by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP190588 and the U.S. National Institutes of Health (NIH) grants (R01CA156775, R01CA204254, R01HL140325, and R21CA231911). This research was supported in part by the Canary Islands Government through the ACIISI (Canarian Agency for Research, Innovation and the Information Society), ITHACA project under Grant Agreement ProID2017010164 and by the Spanish Government through PLATINO project (TEC2017-86722-C4-4-R). This work was completed while Samuel Ortega was beneficiary of a pre-doctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y Sociedad de la Información (ACIISI)” of the “Conserjería de Economía, Industria, Comercio y Conocimiento” of the “Gobierno de Canarias”, which is part-financed by the European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)).
Publisher Copyright:
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the potential to transform the fields of digital and computational pathology. Traditional digitized histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within and beyond the visual range can complement spatial information for the creation of computer-aided diagnostic tools for both stained and unstained histological specimens. In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research. Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an improvement in the detection of diseases and clinical practice compared with traditional RGB analysis, and brings new opportunities in histological analysis of samples, such as digital staining or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of studies in this field is currently limited, and more research is needed to confirm the advantages of this technology compared to conventional imagery.
AB - Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the potential to transform the fields of digital and computational pathology. Traditional digitized histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within and beyond the visual range can complement spatial information for the creation of computer-aided diagnostic tools for both stained and unstained histological specimens. In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research. Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an improvement in the detection of diseases and clinical practice compared with traditional RGB analysis, and brings new opportunities in histological analysis of samples, such as digital staining or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of studies in this field is currently limited, and more research is needed to confirm the advantages of this technology compared to conventional imagery.
UR - http://www.scopus.com/inward/record.url?scp=85085841727&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085841727&partnerID=8YFLogxK
U2 - 10.1364/BOE.386338
DO - 10.1364/BOE.386338
M3 - Review article
C2 - 32637250
AN - SCOPUS:85085841727
SN - 2156-7085
VL - 11
SP - 3195
EP - 3233
JO - Biomedical Optics Express
JF - Biomedical Optics Express
IS - 6
ER -