Abstract
Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO2 nanoparticle afforded TiO2-N3. Upon exposure of TiO2-N3 to light, the N3 injected electrons into TiO2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO2 at 160 mmHg. TiO2-N3 maintained three-fold higher hydroxyl radicals than TiO2 under hypoxic conditions via N3-facilitated electron–hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content.
Original language | English (US) |
---|---|
Pages (from-to) | 10717-10720 |
Number of pages | 4 |
Journal | Angewandte Chemie - International Edition |
Volume | 56 |
Issue number | 36 |
DOIs | |
State | Published - Aug 28 2017 |
Externally published | Yes |
Keywords
- nanophotosensitizer
- photodynamic therapy
- reactive oxygen species (ROS)
- ruthenium complexes
- TiO
ASJC Scopus subject areas
- Catalysis
- Chemistry(all)