High-resolution light-scattering imaging with two-dimensional hexagonal illumination patterns: System implementation and image reconstruction formulations

Chih Wei Chen, Po Hsun Wang, Li Jun Chou, Yin Yu Lee, Bo Jui Chang, Su Yu Chiang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Structured illumination microscopy (SIM) was recently adapted to coherent imaging, named structured oblique-illumination microscopy (SOIM), to improve the contrast and resolution of a light-scattering image. Herein, we present high-resolution laterally isotropic SOIM imaging with 2D hexagonal illuminations. The SOIM is implemented in a SIM fluorescence system based on a spatial-light modulator (SLM). We design an SLM pattern to generate diffraction beams at 0° and ± 60.3° simultaneously to form a 2D hexagonal illumination, and undertake calculations to obtain optimal SLM shifts at 19 phases to yield a reconstructed image correctly. Beams of linear and circular polarizations are used to show the effect of polarization on the resolution improvement. We derive the distributions of the electric field of the resultant hexagonal patterns and work out the formulations of the corresponding coherent-scattering imaging for image reconstruction. The reconstructed images of gold nanoparticles (100 nm) confirm the two-fold improvement of resolution and reveal the effect of polarization on resolving adjacent nanoparticles. To demonstrate biological applications, we present the cellular structures of a label-free fixed HeLa cell with improved contrast and resolution. This work enables one to perform high-resolution dualmode-fluorescence and light-scattering-imaging in a system, and is expected to broaden the applications of SOIM.

Original languageEnglish (US)
Pages (from-to)21652-21672
Number of pages21
JournalOptics Express
Volume25
Issue number18
DOIs
StatePublished - Sep 4 2017
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'High-resolution light-scattering imaging with two-dimensional hexagonal illumination patterns: System implementation and image reconstruction formulations'. Together they form a unique fingerprint.

Cite this