GPCR signaling inhibits mTORC1 via PKA phosphorylation of raptor

Jenna L. Jewell, Vivian Fu, Audrey W. Hong, Fa Xing Yu, Delong Meng, Chase H. Melick, Huanyu Wang, Wai Ling Macrina Lam, Hai Xin Yuan, Susan S. Taylor, Kun Liang Guan

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth, metabolism, and autophagy. Extensive research has focused on pathways that activate mTORC1 like growth factors and amino acids; however, much less is known about signaling cues that directly inhibit mTORC1 activity. Here, we report that G-protein coupled receptors (GPCRs) paired to Gαs proteins increase cyclic adenosine 3’5’ monophosphate (cAMP) to activate protein kinase A (PKA) and inhibit mTORC1. Mechanistically, PKA phosphorylates the mTORC1 component Raptor on Ser 791, leading to decreased mTORC1 activity. Consistently, in cells where Raptor Ser 791 is mutated to Ala, mTORC1 activity is partially rescued even after PKA activation. Gαs-coupled GPCRs stimulation leads to inhibition of mTORC1 in multiple cell lines and mouse tissues. Our results uncover a signaling pathway that directly inhibits mTORC1, and suggest that GPCRs paired to Gαs proteins may be potential therapeutic targets for human diseases with hyperactivated mTORC1.

Original languageEnglish (US)
Article numbere43038
JournaleLife
Volume8
DOIs
StatePublished - May 2019

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'GPCR signaling inhibits mTORC1 via PKA phosphorylation of raptor'. Together they form a unique fingerprint.

Cite this