Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation

Jin Xiang, Chang Chen, Rui Liu, Dongmei Gou, Lei Chang, Haijun Deng, Qingzhu Gao, Wanjun Zhang, Lin Tuo, Xuanming Pan, Li Liang, Jie Xia, Luyi Huang, Ke Yao, Bohong Wang, Zeping Hu, Ailong Huang, Kai Wang, Ni Tang

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Although cancer cells are frequently faced with a nutrient- and oxygen-poor microenvironment, elevated hexosaminebiosynthesis pathway (HBP) activity and protein O-GlcNAcylation (a nutrient sensor) contribute to rapid growth of tumor and are emerging hallmarks of cancer. Inhibiting O-GlcNAcylation could be a promising anticancer strategy. The gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) is downregulated in hepatocellular carcinoma (HCC). However, little is known about the potential role of PCK1 in enhanced HBP activity and HCC carcinogenesis under glucose-limited conditions. In this study, PCK1 knockout markedly enhanced the global O-GlcNAcylation levels under low-glucose conditions. Mechanistically, metabolic reprogramming in PCK1-loss hepatoma cells led to oxaloacetate accumulation and increased de novo uridine triphosphate synthesis contributing to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. Meanwhile, deletion of PCK1 also resulted in AMPK-GFAT1 axis inactivation, promoting UDP-GlcNAc synthesis for elevated OGlcNAcylation. Notably, lower expression of PCK1 promoted CHK2 threonine 378 O-GlcNAcylation, counteracting its stability and dimer formation, increasing CHK2-dependent Rb phosphorylation and HCC cell proliferation. Moreover, aminooxyacetic acid hemihydrochloride and 6-diazo-5-oxo-L-norleucine blocked HBP-mediated O-GlcNAcylation and suppressed tumor progression in liver-specific Pck1-knockout mice. We reveal a link between PCK1 depletion and hyper-O-GlcNAcylation that underlies HCC oncogenesis and suggest therapeutic targets for HCC that act by inhibiting O-GlcNAcylation.

Original languageEnglish (US)
Article numbere144703
JournalJournal of Clinical Investigation
Volume131
Issue number8
DOIs
StatePublished - Apr 15 2021
Externally publishedYes

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation'. Together they form a unique fingerprint.

Cite this