Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm

Samadrita Bhattacharyya, Rahul K. Kollipara, Gabriela Orquera-Tornakian, Sean Goetsch, Minzhe Zhang, Cameron Perry, Boxun Li, John M. Shelton, Minoti Bhakta, Jialei Duan, Yang Xie, Guanghua Xiao, Bret Evers, Gary Hon, Ralf Kittler, Nikhil V. Munshi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.

Original languageEnglish (US)
JournalThe Journal of clinical investigation
Volume133
Issue number3
DOIs
StatePublished - Feb 1 2023

Keywords

  • Cardiology
  • Cardiovascular disease
  • Epigenetics
  • Transcription

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm'. Together they form a unique fingerprint.

Cite this