TY - JOUR
T1 - Gliadin induces neutrophil migration via engagement of the formyl peptide receptor, FPR1
AU - Lammers, Karen M.
AU - Chieppa, Marcello
AU - Liu, Lunhua
AU - Liu, Song
AU - Omatsu, Tatsushi
AU - Janka-Junttila, Mirkka
AU - Casolaro, Vincenzo
AU - Reinecker, Hans Christian
AU - Parent, Carole A.
AU - Fasano, Alessio
N1 - Publisher Copyright:
© 2015 Lammers et al.
PY - 2015/9/17
Y1 - 2015/9/17
N2 - Background Gliadin, the immunogenic component within gluten and trigger of celiac disease, is known to induce the production of Interleukin-8, a potent neutrophil-Activating and chemoattractant chemokine.We sought to study the involvement of neutrophils in the early immunological changes following gliadin exposure. Methods Utilizing immunofluorescence microscopy and flow cytometry, the redistribution of major tight junction protein, Zonula occludens (ZO)-1, and neutrophil recruitment were assessed in duodenal tissues of gliadin-gavaged C57BL/6 wild-Type and Lys-GFP reporter mice, respectively. Intravital microscopy with Lys-GFP mice allowed monitoring of neutrophil recruitment in response to luminal gliadin exposure in real time. In vitro chemotaxis assays were used to study murine and human neutrophil chemotaxis to gliadin, synthetic alpha-gliadin peptides and the neutrophil chemoattractant, fMet-Leu-Phe, in the presence or absence of a specific inhibitor of the fMet-Leu-Phe receptor-1 (FPR1), cyclosporine H. An irrelevant protein, zein, served as a control. Results Redistribution of ZO-1 and an influx of CD11b+Lys6G+ cells in the lamina propria of the small intestine were observed upon oral gavage of gliadin. In vivo intravital microscopy revealed a slowing down of GFP+ cells within the vessels and influx in the mucosal tissue within 2 hours after challenge. In vitro chemotaxis assays showed that gliadin strongly induced neutrophil migration, similar to fMet-Leu-Phe.We identified thirteen synthetic gliadin peptide motifs that induced cell migration. Blocking of FPR1 completely abrogated the fMet-Leu-Phe-, gliadin- and synthetic peptide-induced migration. Conclusions Gliadin possesses neutrophil chemoattractant properties similar to the classical neutrophil chemoattractant, fMet-Leu-Phe, and likewise uses FPR1 in the process.
AB - Background Gliadin, the immunogenic component within gluten and trigger of celiac disease, is known to induce the production of Interleukin-8, a potent neutrophil-Activating and chemoattractant chemokine.We sought to study the involvement of neutrophils in the early immunological changes following gliadin exposure. Methods Utilizing immunofluorescence microscopy and flow cytometry, the redistribution of major tight junction protein, Zonula occludens (ZO)-1, and neutrophil recruitment were assessed in duodenal tissues of gliadin-gavaged C57BL/6 wild-Type and Lys-GFP reporter mice, respectively. Intravital microscopy with Lys-GFP mice allowed monitoring of neutrophil recruitment in response to luminal gliadin exposure in real time. In vitro chemotaxis assays were used to study murine and human neutrophil chemotaxis to gliadin, synthetic alpha-gliadin peptides and the neutrophil chemoattractant, fMet-Leu-Phe, in the presence or absence of a specific inhibitor of the fMet-Leu-Phe receptor-1 (FPR1), cyclosporine H. An irrelevant protein, zein, served as a control. Results Redistribution of ZO-1 and an influx of CD11b+Lys6G+ cells in the lamina propria of the small intestine were observed upon oral gavage of gliadin. In vivo intravital microscopy revealed a slowing down of GFP+ cells within the vessels and influx in the mucosal tissue within 2 hours after challenge. In vitro chemotaxis assays showed that gliadin strongly induced neutrophil migration, similar to fMet-Leu-Phe.We identified thirteen synthetic gliadin peptide motifs that induced cell migration. Blocking of FPR1 completely abrogated the fMet-Leu-Phe-, gliadin- and synthetic peptide-induced migration. Conclusions Gliadin possesses neutrophil chemoattractant properties similar to the classical neutrophil chemoattractant, fMet-Leu-Phe, and likewise uses FPR1 in the process.
UR - http://www.scopus.com/inward/record.url?scp=84945929451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945929451&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0138338
DO - 10.1371/journal.pone.0138338
M3 - Article
C2 - 26378785
AN - SCOPUS:84945929451
SN - 1932-6203
VL - 10
JO - PLoS One
JF - PLoS One
IS - 9
M1 - A1323
ER -