TY - JOUR
T1 - G protein GTPase-activating proteins
T2 - Regulation of speed, amplitude, and signaling selectivity
AU - Ross, Elliott M.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1995
Y1 - 1995
N2 - Numerous hormones of every chemical class use G protein-mediated signaling pathways to convey information from their receptors on the cell surface to the effector proteins that propagate these signals within the target cell. G proteins convey information from receptor to effector by traversing a controlled cycle of activation deactivation. When a receptor binds hormone, it promotes the binding of GTP to a select subset of the G proteins on the inner face of the plasma membrane. GTP binding activates these G proteins and allows them in turn to activate one or more effector proteins. G protein activation is terminated when a G protein hydrolyzes bound GTP to GDP; GDP remains bound but does not activate (for review see Kaziro et al., 1991). Cells use this basic pathway - receptor → G protein → effector - to form a complex information-processing network in the plasma membrane (Fig. 1). A cell responds to selected hormones by expressing appropriate receptors, which may be highly selective for a single G protein or may activate multiple G proteins. Expression of receptor isoforms that are selective for different G proteins can generate diverse cellular signals in response to a single hormone. At the next level in the network, a G protein (some cells express six or more) may respond to several different receptors, one G protein may activate or inhibit one or more of at least a dozen effector proteins. Effectors include enzymes that generate or degrade second messengers (adenylyl cyclase, cyclic GMP phosphodiesterase, phosphoinositide-specific phospholipase C-βs), ion channels (for Na+, Ca2+, or K+), and, probably, transport proteins. As at the previous two levels, effector isoforms respond selectively to distinct G proteins. G protein networks are thus analog computers that propagate an array of cellular signals in response to stimulatory and inhibitory hormones in the milieu of the target cell.
AB - Numerous hormones of every chemical class use G protein-mediated signaling pathways to convey information from their receptors on the cell surface to the effector proteins that propagate these signals within the target cell. G proteins convey information from receptor to effector by traversing a controlled cycle of activation deactivation. When a receptor binds hormone, it promotes the binding of GTP to a select subset of the G proteins on the inner face of the plasma membrane. GTP binding activates these G proteins and allows them in turn to activate one or more effector proteins. G protein activation is terminated when a G protein hydrolyzes bound GTP to GDP; GDP remains bound but does not activate (for review see Kaziro et al., 1991). Cells use this basic pathway - receptor → G protein → effector - to form a complex information-processing network in the plasma membrane (Fig. 1). A cell responds to selected hormones by expressing appropriate receptors, which may be highly selective for a single G protein or may activate multiple G proteins. Expression of receptor isoforms that are selective for different G proteins can generate diverse cellular signals in response to a single hormone. At the next level in the network, a G protein (some cells express six or more) may respond to several different receptors, one G protein may activate or inhibit one or more of at least a dozen effector proteins. Effectors include enzymes that generate or degrade second messengers (adenylyl cyclase, cyclic GMP phosphodiesterase, phosphoinositide-specific phospholipase C-βs), ion channels (for Na+, Ca2+, or K+), and, probably, transport proteins. As at the previous two levels, effector isoforms respond selectively to distinct G proteins. G protein networks are thus analog computers that propagate an array of cellular signals in response to stimulatory and inhibitory hormones in the milieu of the target cell.
UR - http://www.scopus.com/inward/record.url?scp=0029183036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029183036&partnerID=8YFLogxK
U2 - 10.1016/b978-0-12-571150-0.50013-5
DO - 10.1016/b978-0-12-571150-0.50013-5
M3 - Article
C2 - 7740158
AN - SCOPUS:0029183036
SN - 0079-9963
VL - 50
SP - 207
EP - 221
JO - Recent Progress in Hormone Research
JF - Recent Progress in Hormone Research
IS - 1
ER -