TY - JOUR
T1 - Fragile X targeted pharmacotherapy
T2 - Lessons learned and future directions
AU - Erickson, Craig A.
AU - Davenport, Matthew H.
AU - Schaefer, Tori L.
AU - Wink, Logan K.
AU - Pedapati, Ernest V.
AU - Sweeney, John A.
AU - Fitzpatrick, Sarah E.
AU - Brown, W. Ted
AU - Budimirovic, Dejan
AU - Hagerman, Randi J.
AU - Hessl, David
AU - Kaufmann, Walter E.
AU - Berry-Kravis, Elizabeth
N1 - Funding Information:
Dr. Erickson has received current/past support from Alcobra Pharmaceuticals, the American Academy of Child & Adolescent Psychiatry, Autism Speaks, Cincinnati Children’s Hospital Medical Center, FRAXA Research Foundation, Hoffmann-La Roche Inc., Neuren Pharmaceuticals Limited, Simons Foundation Autism Research Initiative, Stemina Biomarker Discovery, Inc., SynapDx, The John Merck Fund, the National Fragile X Foundation, the National Institutes of Health, and the US Department of Defense. Dr. Erickson is a past consultant to Alcobra, Neurotrope, The Roche Group, Novartis, and a current consultant to Confluence Pharmaceuticals and Fulcrum Therapeutics. Additionally, Dr. Erickson is an equity holder in Confluence Pharmaceuticals, a company working to reformulate acamprosate for commercialization purposes in the field of developmental disorders. Drs. Wink and Dr. Pedapati receive research support from Children’s Hospital Research Foundation and the American Academy of Child and Adolescent Psychiatry. Dr. Schaefer has received past support from Confluence Pharmaceuticals and FRAXA Research Foundation. Dr. Sweeney has consulted to Takeda Pharmaceuticals. Ms. Fitz-patrick and Mr. Davenport have no conflict of interests. Dr. Brown receives current support from the Center for Disease Control and has received past support from Hoffmann-La Roche Inc., Novartis, SynapDx, and the National Institutes of Health. Dr. Budimirovic has received support for clinical trials for FXS from Seaside Therapeutics and has done consulting work or received research funding from Asuragen Inc., the American Academy of Child & Adolescent Psychiatry, Ironshore, MEDACorp, and Sunovion. Dr. Randi Hagerman has received support from Neuren, Alcobra, Roche/Genentech, Novartis, Marinus, the Department of Defense, HRSA, and the National Fragile X Foundation to carry out trials in FXS. Dr. Hagerman has also consulted with Ovid, Zynerba, and Alcobra regarding trials in FXS. Dr. Hessl has received past support from Seaside Therapeutics, Novartis, Hoffman-La Roche, Inc., and The John Merck Fund for consulting and clinical trials work in FXS. Dr. Kaufmann is a consultant for Neuren, Newron, Eloxx, EryDel, Marinus, Edison, and GW Pharmaceuticals. He has received past support from Seaside Therapeutics, Novartis, Hoffman-La Roche, and Ipsen. Dr. Berry-Kravis has received current/ past support for clinical trials or research from Alcobra Pharmaceuticals, Asuragen, FRAXA Research Foundation, Hoffmann-La Roche Inc., Neuren Pharmaceuticals Limited, Novartis, Simons Foundation Autism Research Initiative, SynapDx, The John Merck Fund, the National Fragile X Foundation, the National Institutes of Health, National Center for Advancement of Translational Science, and the Centers for Disease Control. Dr. Berry-Kravis is a past consultant to Neurotrope, Roche, Asuragen, Novartis, and a current consultant to Alcobra, Neuren, and Fulcrum Therapeutics.
Funding Information:
NIH grant U54HD082008 (Drs. Erickson, Sweeney, Schaefer, Wink and Pedapati) supported this publication.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/6/12
Y1 - 2017/6/12
N2 - Our understanding of fragile X syndrome (FXS) pathophysiology continues to improve and numerous potential drug targets have been identified. Yet, current prescribing practices are only symptom-based in order to manage difficult behaviors, as no drug to date is approved for the treatment of FXS. Drugs impacting a diversity of targets in the brain have been studied in recent FXS-specific clinical trials. While many drugs have focused on regulation of enhanced glutamatergic or deficient GABAergic neurotransmission, compounds studied have not been limited to these mechanisms. As a single-gene disorder, it was thought that FXS would have consistent drug targets that could be modulated with pharmacotherapy and lead to significant improvement. Unfortunately, despite promising results in FXS animal models, translational drug treatment development in FXS has largely failed. Future success in this field will depend on learning from past challenges to improve clinical trial design, choose appropriate outcome measures and age range choices, and find readily modulated drug targets. Even with many negative placebo-controlled study results, the field continues to move forward exploring both the new mechanistic drug approaches combined with ways to improve trial execution. This review summarizes the known phenotype and pathophysiology of FXS and past clinical trial rationale and results, and discusses current challenges facing the field and lessons from which to learn for future treatment development efforts.
AB - Our understanding of fragile X syndrome (FXS) pathophysiology continues to improve and numerous potential drug targets have been identified. Yet, current prescribing practices are only symptom-based in order to manage difficult behaviors, as no drug to date is approved for the treatment of FXS. Drugs impacting a diversity of targets in the brain have been studied in recent FXS-specific clinical trials. While many drugs have focused on regulation of enhanced glutamatergic or deficient GABAergic neurotransmission, compounds studied have not been limited to these mechanisms. As a single-gene disorder, it was thought that FXS would have consistent drug targets that could be modulated with pharmacotherapy and lead to significant improvement. Unfortunately, despite promising results in FXS animal models, translational drug treatment development in FXS has largely failed. Future success in this field will depend on learning from past challenges to improve clinical trial design, choose appropriate outcome measures and age range choices, and find readily modulated drug targets. Even with many negative placebo-controlled study results, the field continues to move forward exploring both the new mechanistic drug approaches combined with ways to improve trial execution. This review summarizes the known phenotype and pathophysiology of FXS and past clinical trial rationale and results, and discusses current challenges facing the field and lessons from which to learn for future treatment development efforts.
KW - Drug development
KW - Fragile X syndrome
KW - Genetic disorder
KW - Targeted treatments
KW - Translational treatment
UR - http://www.scopus.com/inward/record.url?scp=85020725021&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020725021&partnerID=8YFLogxK
U2 - 10.1186/s11689-017-9186-9
DO - 10.1186/s11689-017-9186-9
M3 - Review article
C2 - 28616096
AN - SCOPUS:85020725021
SN - 1866-1947
VL - 9
JO - Journal of Neurodevelopmental Disorders
JF - Journal of Neurodevelopmental Disorders
IS - 1
M1 - 7
ER -