Folding intermediates of snare complex assembly

K. M. Fiebig, L. M. Rice, E. Pollock, A. T. Brunger

Research output: Contribution to journalArticlepeer-review

239 Scopus citations

Abstract

SNARE (soluble NSF attachment protein receptor) proteins assemble into a stable complex essential for vesicle-membrane fusion. To further understand SNARE function we have used solution nuclear magnetic resonance (NMR) spectroscopy to characterize three assembly states of a yeast SNARE complex: first, the 'closed' conformation of Sso1; second, the binary complex of Sso1 and Sec9; and third, the ternary complex of Sso1, Sec9 and Snc1. Sec9 and Snc1 are unstructured in isolation. Sso1 likely consists of a four helix bundle formed by part of the C-terminal H(core) domain and the N-terminal H(A)H(B)H(C) domain, and this bundle is flanked on both sides by large flexible regions. Sso1 switches to an 'open' state when its H(core) domain binds Sec9. Conformational switching of the H(core) domain, via H(A)H(B)H(C), may provide a key regulatory mechanism in SNARE assembly. Formation of binary and ternary complexes induces additional α-helical structure in previously unstructured regions. Our data suggest a directed assembly process beginning distal to the membrane surfaces and proceeding toward them, bringing membranes into close proximity and possibly leading to membrane fusion.

Original languageEnglish (US)
Pages (from-to)117-123
Number of pages7
JournalNature Structural Biology
Volume6
Issue number2
DOIs
StatePublished - 1999

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Genetics

Fingerprint

Dive into the research topics of 'Folding intermediates of snare complex assembly'. Together they form a unique fingerprint.

Cite this