TY - JOUR
T1 - Fick versus flow
T2 - a real-time invasive cardiovascular magnetic resonance (iCMR) reproducibility study
AU - Arar, Yousef
AU - Hussain, Tarique
AU - Abou Zahr, Riad
AU - Gooty, Vasu
AU - Greer, Joshua S.
AU - Huang, Rong
AU - Hernandez, Jennifer
AU - King, Jamie
AU - Greil, Gerald
AU - Veeram Reddy, Surendranath R.
N1 - Funding Information:
Research reported in this publication was supported by Children’s Health, Dallas and the Moss Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of Children’s Health. The Pogue Family Distinguished Chair in Pediatric Cardiology was awarded to Dr. F. Gerald Greil in February 2015. The purpose of the funds is to encourage research, personnel and institution development. Pogue Family Distinguished Chair – Dr. Gerald Greil. Children’s Clinical Research Advisory Committee – Dr. Yousef Arar. Harry S. Moss Foundation – Dr. Tarique Hussian.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Cardiac catheterization and cardiovascular magnetic resonance (CMR) imaging have distinct diagnostic roles in the congenital heart disease (CHD) population. Invasive CMR (iCMR) allows for a more thorough assessment of cardiac hemodynamics at the same time under the same conditions. It is assumed but not proven that iCMR gives an incremental value by providing more accurate flow quantification. Methods: Subjects with CHD underwent real-time 1.5 T iCMR using a passive catheter tracking technique with partial saturation pulse of 40° to visualize the gadolinium-filled balloon, CMR-conditional guidewire, and cardiac structures simultaneously to aid in completion of right (RHC) and left heart catheterization (LHC). Repeat iCMR and catheterization measurements were performed to compare reliability by the Pearson (PCC) and concordance correlation coefficients (CCC). Results: Thirty CHD (20 single ventricle and 10 bi-ventricular) subjects with a median age and weight of 8.3 years (2–33) and 27.7 kg (9.2–80), respectively, successfully underwent iCMR RHC and LHC. No catheter related complications were encountered. Time taken for first pass RHC and LHC/aortic pull back was 5.1, and 2.9 min, respectively. Total success rate to obtain required data points to complete Fick principle calculations for all patients was 321/328 (98%). One patient with multiple shunts was an outlier and excluded from further analysis. The PCC for catheter-derived pulmonary blood flow (Qp) (0.89, p < 0.001) is slightly lower than iCMR-derived Qp (0.96, p < 0.001), whereas catheter-derived systemic blood flow (Qs) (0.62, p = < 0.001) was considerably lower than iCMR-derived Qs (0.94, p < 0.001). CCC agreement for Qp at baseline (C1-CCC = 0.65, 95% CI 0.41–0.81) and retested conditions (C2-CCC = 0.78, 95% CI 0.58–0.89) were better than for Qs at baseline (C1-CCC = 0.22, 95% CI − 0.15–0.53) and retested conditions (C2-CCC = 0.52, 95% CI 0.17–0.76). Conclusion: This study further validates hemodynamic measurements obtained via iCMR. iCMR-derived flows have considerably higher test–retest reliability for Qs. iCMR evaluations allow for more reproducible hemodynamic assessments in the CHD population.
AB - Background: Cardiac catheterization and cardiovascular magnetic resonance (CMR) imaging have distinct diagnostic roles in the congenital heart disease (CHD) population. Invasive CMR (iCMR) allows for a more thorough assessment of cardiac hemodynamics at the same time under the same conditions. It is assumed but not proven that iCMR gives an incremental value by providing more accurate flow quantification. Methods: Subjects with CHD underwent real-time 1.5 T iCMR using a passive catheter tracking technique with partial saturation pulse of 40° to visualize the gadolinium-filled balloon, CMR-conditional guidewire, and cardiac structures simultaneously to aid in completion of right (RHC) and left heart catheterization (LHC). Repeat iCMR and catheterization measurements were performed to compare reliability by the Pearson (PCC) and concordance correlation coefficients (CCC). Results: Thirty CHD (20 single ventricle and 10 bi-ventricular) subjects with a median age and weight of 8.3 years (2–33) and 27.7 kg (9.2–80), respectively, successfully underwent iCMR RHC and LHC. No catheter related complications were encountered. Time taken for first pass RHC and LHC/aortic pull back was 5.1, and 2.9 min, respectively. Total success rate to obtain required data points to complete Fick principle calculations for all patients was 321/328 (98%). One patient with multiple shunts was an outlier and excluded from further analysis. The PCC for catheter-derived pulmonary blood flow (Qp) (0.89, p < 0.001) is slightly lower than iCMR-derived Qp (0.96, p < 0.001), whereas catheter-derived systemic blood flow (Qs) (0.62, p = < 0.001) was considerably lower than iCMR-derived Qs (0.94, p < 0.001). CCC agreement for Qp at baseline (C1-CCC = 0.65, 95% CI 0.41–0.81) and retested conditions (C2-CCC = 0.78, 95% CI 0.58–0.89) were better than for Qs at baseline (C1-CCC = 0.22, 95% CI − 0.15–0.53) and retested conditions (C2-CCC = 0.52, 95% CI 0.17–0.76). Conclusion: This study further validates hemodynamic measurements obtained via iCMR. iCMR-derived flows have considerably higher test–retest reliability for Qs. iCMR evaluations allow for more reproducible hemodynamic assessments in the CHD population.
KW - Cardiac catheterization
KW - Congenital heart disease
KW - Device tracking
KW - Interventional CMR
KW - Magnetic resonance imaging
KW - Reproducibility
UR - http://www.scopus.com/inward/record.url?scp=85110435093&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110435093&partnerID=8YFLogxK
U2 - 10.1186/s12968-021-00784-7
DO - 10.1186/s12968-021-00784-7
M3 - Article
C2 - 34275477
AN - SCOPUS:85110435093
SN - 1097-6647
VL - 23
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 1
M1 - 95
ER -