TY - JOUR
T1 - Fast-onset lidocaine block of rat NaV1.4 channels suggests involvement of a second high-affinity open state
AU - Gingrich, Kevin J.
AU - Wagner, Larry E.
N1 - Publisher Copyright:
© 2016 Elsevier B.V. All rights reserved.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Local anesthetics (LAs) block resting, open, and inactivated states of voltage-gated Na+ channels where inactivated states are thought to bind with highest affinity. However, reports of fast-onset block occurring over milliseconds hint at high-affinity block of open channels. Movement of voltage-sensor domain IV-segment 4 (DIVS4) has been associated with high affinity LA block termed voltage-sensor block (VSB) that also leads to a second open state. These observations point to a second high-affinity open state that may underlie fast-onset block. To test for this state, we analyzed the modulation of Na+ currents by lidocaine and its quaternary derivative (QX222) from heterologously expressed (Xenopus laevis oocytes) rat skeletal muscle μ1 NaV1.4 (rSkM1) with β1 (WT-β1), and a mutant form (IFM-QQQ mutation in the III-IV interdomain, QQQ) lacking fast inactivation, in combination with Markov kinetic gating models. 100 μM lidocaine induced fast-onset (τonset 2 ms), long-lived (τrecovery 120 ms) block of WT-β1 macroscopic currents. Lidocaine blocked single-channel and macroscopic QQQ currents in agreement with our previously described mechanism of dual, open-channel block (DOB mechanism). A DOB kinetic model reproduced lidocaine effects on QQQ currents. The DOB model was extended to include trapping fast-inactivation and activation gates, and a second open state (OS2); the latter arising from DIVS4 translocation that precedes inactivation and exhibits high-affinity, lidocaine binding (apparent Kd = 25 μM) that accords with VSB (DOB-S2VSB mechanism). The DOB-S2VSB kinetic model predicted fast-onset block of WT-β1. The findings support the involvement of a second, high-affinity, open state in lidocaine modulation of Na+ channels.
AB - Local anesthetics (LAs) block resting, open, and inactivated states of voltage-gated Na+ channels where inactivated states are thought to bind with highest affinity. However, reports of fast-onset block occurring over milliseconds hint at high-affinity block of open channels. Movement of voltage-sensor domain IV-segment 4 (DIVS4) has been associated with high affinity LA block termed voltage-sensor block (VSB) that also leads to a second open state. These observations point to a second high-affinity open state that may underlie fast-onset block. To test for this state, we analyzed the modulation of Na+ currents by lidocaine and its quaternary derivative (QX222) from heterologously expressed (Xenopus laevis oocytes) rat skeletal muscle μ1 NaV1.4 (rSkM1) with β1 (WT-β1), and a mutant form (IFM-QQQ mutation in the III-IV interdomain, QQQ) lacking fast inactivation, in combination with Markov kinetic gating models. 100 μM lidocaine induced fast-onset (τonset 2 ms), long-lived (τrecovery 120 ms) block of WT-β1 macroscopic currents. Lidocaine blocked single-channel and macroscopic QQQ currents in agreement with our previously described mechanism of dual, open-channel block (DOB mechanism). A DOB kinetic model reproduced lidocaine effects on QQQ currents. The DOB model was extended to include trapping fast-inactivation and activation gates, and a second open state (OS2); the latter arising from DIVS4 translocation that precedes inactivation and exhibits high-affinity, lidocaine binding (apparent Kd = 25 μM) that accords with VSB (DOB-S2VSB mechanism). The DOB-S2VSB kinetic model predicted fast-onset block of WT-β1. The findings support the involvement of a second, high-affinity, open state in lidocaine modulation of Na+ channels.
KW - Local anesthetic
KW - Markov models
KW - Open-channel block
KW - Sodium channels
KW - Voltage-clamp
KW - Xenopus oocytes
UR - http://www.scopus.com/inward/record.url?scp=84961230916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961230916&partnerID=8YFLogxK
U2 - 10.1016/j.bbamem.2016.02.033
DO - 10.1016/j.bbamem.2016.02.033
M3 - Article
C2 - 26922882
AN - SCOPUS:84961230916
SN - 0005-2736
VL - 1858
SP - 1175
EP - 1188
JO - Biochimica et Biophysica Acta - Biomembranes
JF - Biochimica et Biophysica Acta - Biomembranes
IS - 6
ER -