TY - JOUR
T1 - Expansions of CAG•CTG repeats in immortalized human astrocytes
AU - Claassen, David A.
AU - Lahue, Robert S.
N1 - Funding Information:
National Institutes of Health (GM61961 to R.S.L.); Science Foundation of Ireland (06/IN.1/B73 to R.S.L.); Graduate fel- lowship from the University of Nebraska Medical Center (to D.A.C); National Cancer Institute Cancer Center Support (P30 CA36727 to the Eppley Institute).
PY - 2007/12/15
Y1 - 2007/12/15
N2 - Expansions of trinucleotide repeats (TNRs) are the genetic cause for a number of neurodegenerative disorders. In some of these diseases, ongoing somatic expansions in the brain are thought to contribute to disease progression. Expansions can occur in both neurons and supporting glial cells, but little is known about molecular mechanisms of expansion in these cells, particularly glia. To help address this issue, a cultured human astrocyte cell line called SVG-A was tested for expansions of CAG•CTG repeats present on a shuttle vector. A quantitative genetic selection showed that +4 to +015 repeat expansions occur readily for starting alleles of 25 repeats, thereby spanning the important boundary between short stable repeats and longer more unstable CAG•CTG tracts. These expansions in glial cell culture, as in humans, were sequence and length-dependent, and were inhibited by the presence of a sequence interruption within the triplet repeat tract. These findings suggest that the mutations seen in cell culture reflect at least some of the in vivo expansions seen in glia. Mechanistically, it was found that the direction of DNA replication through the TNR influenced the frequency of expansions, suggesting that either replication or a replication-associated process, such as DNA repair, contributes to CAG•CTG tract instability in SVG-A cells. This finding is consistent with the idea that replication-based mechanisms can be a source of TNR expansions in astrocytes, which, unlike neurons, retain proliferative capacity throughout life.
AB - Expansions of trinucleotide repeats (TNRs) are the genetic cause for a number of neurodegenerative disorders. In some of these diseases, ongoing somatic expansions in the brain are thought to contribute to disease progression. Expansions can occur in both neurons and supporting glial cells, but little is known about molecular mechanisms of expansion in these cells, particularly glia. To help address this issue, a cultured human astrocyte cell line called SVG-A was tested for expansions of CAG•CTG repeats present on a shuttle vector. A quantitative genetic selection showed that +4 to +015 repeat expansions occur readily for starting alleles of 25 repeats, thereby spanning the important boundary between short stable repeats and longer more unstable CAG•CTG tracts. These expansions in glial cell culture, as in humans, were sequence and length-dependent, and were inhibited by the presence of a sequence interruption within the triplet repeat tract. These findings suggest that the mutations seen in cell culture reflect at least some of the in vivo expansions seen in glia. Mechanistically, it was found that the direction of DNA replication through the TNR influenced the frequency of expansions, suggesting that either replication or a replication-associated process, such as DNA repair, contributes to CAG•CTG tract instability in SVG-A cells. This finding is consistent with the idea that replication-based mechanisms can be a source of TNR expansions in astrocytes, which, unlike neurons, retain proliferative capacity throughout life.
UR - http://www.scopus.com/inward/record.url?scp=36248939736&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36248939736&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddm270
DO - 10.1093/hmg/ddm270
M3 - Article
C2 - 17881653
AN - SCOPUS:36248939736
SN - 0964-6906
VL - 16
SP - 3088
EP - 3096
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 24
ER -