TY - JOUR
T1 - Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive sprague-dawley but not in hypertensive ren-2 transgenic rats
AU - Hrdlička, Jaroslav
AU - Neckář, Jan
AU - Papoušek, František
AU - Husková, Zuzana
AU - Kikerlová, Soňa
AU - Vaňourková, Zdenka
AU - Vernerová, Zdenka
AU - Akat, Firat
AU - Vašinová, Jana
AU - Hammock, Bruce D.
AU - Hwang, Sung Hee
AU - Imig, John D.
AU - Falck, John R.
AU - Červenka, Luděk
AU - Kolář, František
N1 - Funding Information:
JH was supported by the Charles University, Project GAUK No. 1064317. JN was supported by grant of Ministry of Health of the Czech Republic (Grant No. 15-27735A), and the Institutional Research Projects 67985823 (Institute of Physiology, CAS) and 00023001 (IKEM). BH was supported by NIEHS R01 ES002710 and Superfund Research Program P42 ES004699. JI was supported by the Dr. Ralph and Marian Falk Medical Research Trust Bank of America, N.A., Trustee. JF was supported by Robert Welch Foundation (I-0011).
Publisher Copyright:
© 2019 Hrdlička, Neckář, Papoušek, Husková, Kikerlová, Vaňourková, Vernerová, Akat, Vašinová, Hammock, Hwang, Imig, Falck, Červenka and Kolář.
PY - 2019
Y1 - 2019
N2 - Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio-and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped ) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max ] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
AB - Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio-and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped ) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max ] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
KW - Chronic heart failure
KW - Echocardiography
KW - Epoxyeicosatrienoic acid
KW - Hypertension
KW - Myocardial infarction
KW - Soluble epoxide hydrolase
UR - http://www.scopus.com/inward/record.url?scp=85064975290&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064975290&partnerID=8YFLogxK
U2 - 10.3389/fphar.2019.00159
DO - 10.3389/fphar.2019.00159
M3 - Article
C2 - 30881303
AN - SCOPUS:85064975290
SN - 1663-9812
VL - 10
JO - Frontiers in Pharmacology
JF - Frontiers in Pharmacology
M1 - 159
ER -