Engrams and circuits crucial for systems consolidation of a memory

Takashi Kitamura, Sachie K. Ogawa, Dheeraj S. Roy, Teruhiro Okuyama, Mark D. Morrissey, Lillian M. Smith, Roger L. Redondo, Susumu Tonegawa

Research output: Contribution to journalArticlepeer-review

584 Scopus citations

Abstract

Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation have thus far been unknown.We found that neocortical prefrontal memory engram cells, which are critical for remote contextual fear memory, were rapidly generated during initial learning through inputs from both the hippocampal-entorhinal cortex network and the basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, were maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory.

Original languageEnglish (US)
Pages (from-to)73-78
Number of pages6
JournalScience
Volume356
Issue number6333
DOIs
StatePublished - Apr 7 2017

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Engrams and circuits crucial for systems consolidation of a memory'. Together they form a unique fingerprint.

Cite this