TY - JOUR
T1 - Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge
AU - Pearson, James
AU - Lucas, Rebekah A I
AU - Schlader, Zachary J.
AU - Gagnon, Daniel
AU - Crandall, Craig G.
N1 - Funding Information:
This study was supported by awards from the National Institutes of Health (R01GM068865, F32AG04328) and the Department of Defense (W81XWH-12-1-0152). We would like to thank the subjects for participating in our study. We would also like to thank Kim Guilliotti, MS, Jena Kern, RN and Naomi Kennedy, RN for their technical assistance.
Publisher Copyright:
© 2016 The Authors. Experimental Physiology © 2016 The Physiological Society
PY - 2017/2/1
Y1 - 2017/2/1
N2 - New Findings: What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin) and core temperatures (Tcore) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin hyperthermia (569 ± 151 mmHg min) and core hyperthermia trials (563 ± 194 mmHg min) relative to control conditions (1010 ± 246 mmHg min; both P < 0.05). However, LBNP tolerance did not differ between skin hyperthermia and core hyperthermia trials (P = 0.92). The lowest LBNP tolerance was observed during combined skin and core hyperthermia (257 ± 106 mmHg min; P < 0.05 relative to all other trials). These data indicate that elevated skin temperature, as well as elevated core temperature, can both contribute to reductions in LBNP tolerance in heat-stressed individuals. However, heat stress-induced reductions in LBNP tolerance are greatest in conditions when both skin and core temperatures are elevated.
AB - New Findings: What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin) and core temperatures (Tcore) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin hyperthermia (569 ± 151 mmHg min) and core hyperthermia trials (563 ± 194 mmHg min) relative to control conditions (1010 ± 246 mmHg min; both P < 0.05). However, LBNP tolerance did not differ between skin hyperthermia and core hyperthermia trials (P = 0.92). The lowest LBNP tolerance was observed during combined skin and core hyperthermia (257 ± 106 mmHg min; P < 0.05 relative to all other trials). These data indicate that elevated skin temperature, as well as elevated core temperature, can both contribute to reductions in LBNP tolerance in heat-stressed individuals. However, heat stress-induced reductions in LBNP tolerance are greatest in conditions when both skin and core temperatures are elevated.
KW - cutaneous vascular conductance
KW - hyperthermia
KW - simulated hemmorhagic tolerance
UR - http://www.scopus.com/inward/record.url?scp=85010495337&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010495337&partnerID=8YFLogxK
U2 - 10.1113/EP085896
DO - 10.1113/EP085896
M3 - Article
C2 - 27981648
AN - SCOPUS:85010495337
SN - 0958-0670
VL - 102
SP - 255
EP - 264
JO - Experimental Physiology
JF - Experimental Physiology
IS - 2
ER -