Effects of odd-numbered medium-chain fatty acids on the accumulation of long-chain 3-hydroxy-fatty acids in long-chain L-3-hydroxyacyl CoA dehydrogenase and mitochondrial trifunctional protein deficient skin fibroblasts

Patricia M. Jones, Yasmeen M. Butt, Michael J. Bennett

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The treatment for patients with genetic disorders of mitochondrial long-chain fatty acid β-oxidation is directed toward providing sufficient sources of energy for normal growth and development, and at the same time preventing the adverse effects that precipitate or result from metabolic decompensation. Standard of care treatment has focused on preventing the mobilization of lipids that result from fasting and providing medium-chain triglycerides (MCT) in the diet in order to bypass the long-chain metabolic block. MCTs that are currently available as commercial preparations are in the form of even-chain fatty acids that are predominately a mixture of octanoate and decanoate. Recently, the use of odd-chain fatty acids has been proposed as an alternative treatment. We have shown previously that the even-numbered medium-chain fatty acids (MCFAs) that are found in MCT preparations can reduce the accumulation of potentially toxic long-chain metabolites of fatty acid oxidation (FAO). In the current study, we undertook to determine if the same is true of odd-numbered MCFAs. We found that provision of odd-chain species does decrease the build-up of long-chain FAO intermediates in our in vitro skin fibroblast model, but to a lesser extent than even-numbered MCFAs.

Original languageEnglish (US)
Pages (from-to)96-99
Number of pages4
JournalMolecular genetics and metabolism
Volume81
Issue number2
DOIs
StatePublished - Feb 2004

Keywords

  • 3-Hydroxy-fatty acids
  • Heptanoate
  • LCHAD deficiency
  • MTFP deficiency
  • Medium-chain fatty acids
  • Nonanoate

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Endocrinology

Fingerprint

Dive into the research topics of 'Effects of odd-numbered medium-chain fatty acids on the accumulation of long-chain 3-hydroxy-fatty acids in long-chain L-3-hydroxyacyl CoA dehydrogenase and mitochondrial trifunctional protein deficient skin fibroblasts'. Together they form a unique fingerprint.

Cite this