TY - JOUR
T1 - Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy
AU - Vega, Rick B.
AU - Rothermel, Beverly A.
AU - Weinheimer, Carla J.
AU - Kovacs, Atilla
AU - Naseem, R. H.
AU - Bassel-Duby, Rhonda
AU - Williams, R. S.
AU - Olson, Eric N.
PY - 2003/1/21
Y1 - 2003/1/21
N2 - The calcium/calmodulin-dependent protein phosphatase calcineurin stimulates cardiac hypertrophy in response to numerous stimuli. Calcineurin activity is suppressed by association with modulatory calcineurin-interacting protein (MCIP)1/DSCR1, which is up-regulated by calcineurin signaling and has been proposed to function in a negative feedback loop to modulate calcineurin activity. To investigate the involvement of MCIP1 in cardiac hypertrophy in vivo, we generated MCIP1 null mice and subjected them to a variety of stress stimuli that induce cardiac hypertrophy, In the absence of stress, MCIP1-/- animals exhibited no overt phenotype. However, the lack of MCIP1 exacerbated the hypertrophic response to activated calcineurin expressed from a muscle-specific transgene, consistent with a role of MCIP1 as a negative regulator of calcineurin signaling. Paradoxically, however, cardiac hypertrophy in response to pressure overload or chronic adrenergic stimulation was blunted in MCIP1-/- mice. These findings suggest that MCIP1 can facilitate or suppress cardiac calcineurin signaling depending on the nature of the hypertrophic stimulus. These opposing roles of MCIP have important implications for therapeutic strategies to regulate cardiac hypertrophy through modulation of calcineurin-MCIP activity.
AB - The calcium/calmodulin-dependent protein phosphatase calcineurin stimulates cardiac hypertrophy in response to numerous stimuli. Calcineurin activity is suppressed by association with modulatory calcineurin-interacting protein (MCIP)1/DSCR1, which is up-regulated by calcineurin signaling and has been proposed to function in a negative feedback loop to modulate calcineurin activity. To investigate the involvement of MCIP1 in cardiac hypertrophy in vivo, we generated MCIP1 null mice and subjected them to a variety of stress stimuli that induce cardiac hypertrophy, In the absence of stress, MCIP1-/- animals exhibited no overt phenotype. However, the lack of MCIP1 exacerbated the hypertrophic response to activated calcineurin expressed from a muscle-specific transgene, consistent with a role of MCIP1 as a negative regulator of calcineurin signaling. Paradoxically, however, cardiac hypertrophy in response to pressure overload or chronic adrenergic stimulation was blunted in MCIP1-/- mice. These findings suggest that MCIP1 can facilitate or suppress cardiac calcineurin signaling depending on the nature of the hypertrophic stimulus. These opposing roles of MCIP have important implications for therapeutic strategies to regulate cardiac hypertrophy through modulation of calcineurin-MCIP activity.
UR - http://www.scopus.com/inward/record.url?scp=0037457958&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037457958&partnerID=8YFLogxK
U2 - 10.1073/pnas.0237225100
DO - 10.1073/pnas.0237225100
M3 - Article
C2 - 12515860
AN - SCOPUS:0037457958
SN - 0027-8424
VL - 100
SP - 669
EP - 674
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 2
ER -