Dual-modality, dual-functional nanoprobes for cellular and molecular imaging

Jyothi U. Menon, Praveen K. Gulaka, Madalyn A. McKay, Sairam Geethanath, Li Liu, Vikram D. Kodibagkar

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/ Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications.

Original languageEnglish (US)
Pages (from-to)1199-1207
Number of pages9
JournalTheranostics
Volume2
Issue number12
DOIs
StatePublished - 2012

Keywords

  • Dual-modality
  • Fluorescence
  • MR oximetry
  • Nanoemulsions
  • Nile Red
  • hexamethyldisiloxane

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Fingerprint

Dive into the research topics of 'Dual-modality, dual-functional nanoprobes for cellular and molecular imaging'. Together they form a unique fingerprint.

Cite this