Discovery of KRB-456, a KRAS G12D Switch-I/II Allosteric Pocket Binder That Inhibits the Growth of Pancreatic Cancer Patient-derived Tumors

Aslamuzzaman Kazi, Alok Ranjan, M. V.Vasantha Kumar, Bogos Agianian, Martin Garcia Chavez, Vignesh Vudatha, Rui Wang, Rajanikanth Vangipurapu, Liwei Chen, Perry Kennedy, Karthikeyan Subramanian, Jonathan C.K. Quirke, Francisca Beato, Patrick W. Underwood, Jason B. Fleming, Jose Trevino, Paul J. Hergenrother, Evripidis Gavathiotis, Said M. Sebti

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch- I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer.

Original languageEnglish (US)
Pages (from-to)2623-2639
Number of pages17
JournalCancer Research Communications
Volume3
Issue number12
DOIs
StatePublished - Dec 2023
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Discovery of KRB-456, a KRAS G12D Switch-I/II Allosteric Pocket Binder That Inhibits the Growth of Pancreatic Cancer Patient-derived Tumors'. Together they form a unique fingerprint.

Cite this