TY - JOUR
T1 - Differential temporal and spatial expression of mRNA encoding extracellular matrix components in decidua during the peri-implantation period
AU - Farrar, J. D.
AU - Carson, D. D.
PY - 1992
Y1 - 1992
N2 - Changes in the temporal and spatial patterns of expression of mRNA encoding uterine extracellular matrix (ECM) proteins were determined during the peri-implantation period. Northern blot hybridization of cDNAs corresponding to laminin (LM) B1, LM B2, entactin, fibronectin, collagen (CL) type IV α1, and CL IV α2 was performed on RNA extracted from either whole mouse uteri or endometrial explants between Day 4, i.e., the day of implantation, and Day 7 of pregnancy, when the decidual response is well established. These analyses revealed a dramatic increase in LM B2, and CL IV α2 mRNA expression by Day 7 of pregnancy. Relative levels of the mRNA encoding other ECM components, including LM B1, were not altered when compared to changes in the relative level of expression of glyceraldehyde-3- phosphate dehydrogenase mRNA. The differential expression of the B chains of LM appeared to be limited to the stromal cells of the endometrium. In situ hybridization of uterine sections with cRNA probes corresponding to LM B1, LM B2, and CL IV α1 demonstrated that LM B1 was expressed temporally in high amounts in the primary decidual zones (PDZ) and persisted throughout PDZ degeneration. LM B2 mRNA was expressed in both primary and secondary decidual zones and persisted through Day 8 of pregnancy. CL IV α1 mRNA expression mimicked that of LM B2. Oviduct ligation on Day 2 of pregnancy was used to prevent embryo transport to one uterine horn, whereas decidualization and embryo implantation were permitted in the contralateral horn. This experiment demonstrated that the increases in uterine ECM mRNA expression were not due solely to the changing hormonal milieu of the uterus. ECM components, including CL IV, have been shown to bind growth factors such as transforming growth factor-β (TGF-β) in an insoluble but biologically active form. The remarkable similarity between the pattern of CL IV and LM B2 expression and previously reported TGF-β deposition (Tamada et al., Mol Endocrinol 1990; 4:965-972) prompted examination of the effects of this growth factor on blastocyst development in vitro. TGF-β1 was tested for its ability to alter embryo outgrowth on LM-coated tissue culture surfaces; however, significant differences in the rate or extent of outgrowth in the presence of TGF-β were not detected. Collectively, these studies indicate that marked changes occur in both the temporal and regional patterns of expression of uterine ECM components, including differential expression of mRNA encoding LM subunits; however, TGF-β1 does not appear to directly influence embryo outgrowth on LM.
AB - Changes in the temporal and spatial patterns of expression of mRNA encoding uterine extracellular matrix (ECM) proteins were determined during the peri-implantation period. Northern blot hybridization of cDNAs corresponding to laminin (LM) B1, LM B2, entactin, fibronectin, collagen (CL) type IV α1, and CL IV α2 was performed on RNA extracted from either whole mouse uteri or endometrial explants between Day 4, i.e., the day of implantation, and Day 7 of pregnancy, when the decidual response is well established. These analyses revealed a dramatic increase in LM B2, and CL IV α2 mRNA expression by Day 7 of pregnancy. Relative levels of the mRNA encoding other ECM components, including LM B1, were not altered when compared to changes in the relative level of expression of glyceraldehyde-3- phosphate dehydrogenase mRNA. The differential expression of the B chains of LM appeared to be limited to the stromal cells of the endometrium. In situ hybridization of uterine sections with cRNA probes corresponding to LM B1, LM B2, and CL IV α1 demonstrated that LM B1 was expressed temporally in high amounts in the primary decidual zones (PDZ) and persisted throughout PDZ degeneration. LM B2 mRNA was expressed in both primary and secondary decidual zones and persisted through Day 8 of pregnancy. CL IV α1 mRNA expression mimicked that of LM B2. Oviduct ligation on Day 2 of pregnancy was used to prevent embryo transport to one uterine horn, whereas decidualization and embryo implantation were permitted in the contralateral horn. This experiment demonstrated that the increases in uterine ECM mRNA expression were not due solely to the changing hormonal milieu of the uterus. ECM components, including CL IV, have been shown to bind growth factors such as transforming growth factor-β (TGF-β) in an insoluble but biologically active form. The remarkable similarity between the pattern of CL IV and LM B2 expression and previously reported TGF-β deposition (Tamada et al., Mol Endocrinol 1990; 4:965-972) prompted examination of the effects of this growth factor on blastocyst development in vitro. TGF-β1 was tested for its ability to alter embryo outgrowth on LM-coated tissue culture surfaces; however, significant differences in the rate or extent of outgrowth in the presence of TGF-β were not detected. Collectively, these studies indicate that marked changes occur in both the temporal and regional patterns of expression of uterine ECM components, including differential expression of mRNA encoding LM subunits; however, TGF-β1 does not appear to directly influence embryo outgrowth on LM.
UR - http://www.scopus.com/inward/record.url?scp=0026540399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026540399&partnerID=8YFLogxK
U2 - 10.1095/biolreprod46.6.1095
DO - 10.1095/biolreprod46.6.1095
M3 - Article
C2 - 1391307
AN - SCOPUS:0026540399
SN - 0006-3363
VL - 46
SP - 1095
EP - 1108
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 6
ER -