Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation

Dimitris Bertsimas, Jerry Kung, Nikolaos Trichakis, Yuchen Wang, Ryutaro Hirose, Parsia A. Vagefi

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Since 2002, the Model for End-Stage Liver Disease (MELD) has been used to rank liver transplant candidates. However, despite numerous revisions, MELD allocation still does not allow for equitable access to all waitlisted candidates. An optimized prediction of mortality (OPOM) was developed ( utilizing machine-learning optimal classification tree models trained to predict a candidate's 3-month waitlist mortality or removal utilizing the Standard Transplant Analysis and Research (STAR) dataset. The Liver Simulated Allocation Model (LSAM) was then used to compare OPOM to MELD-based allocation. Out-of-sample area under the curve (AUC) was also calculated for candidate groups of increasing disease severity. OPOM allocation, when compared to MELD, reduced mortality on average by 417.96 (406.8-428.4) deaths every year in LSAM analysis. Improved survival was noted across all candidate demographics, diagnoses, and geographic regions. OPOM delivered a substantially higher AUC across all disease severity groups. OPOM more accurately and objectively prioritizes candidates for liver transplantation based on disease severity, allowing for more equitable allocation of livers with a resultant significant number of additional lives saved every year. These data demonstrate the potential of machine learning technology to help guide clinical practice, and potentially guide national policy.

Original languageEnglish (US)
Pages (from-to)1109-1118
Number of pages10
JournalAmerican Journal of Transplantation
Issue number4
StatePublished - Apr 2019


  • ethics and public policy
  • liver transplantation/hepatology
  • liver transplantation: auxiliary
  • simulation
  • statistics

ASJC Scopus subject areas

  • Immunology and Allergy
  • Transplantation
  • Pharmacology (medical)


Dive into the research topics of 'Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation'. Together they form a unique fingerprint.

Cite this