Abstract
A novel series of naphthalene derivatives were designed and synthesized based on the strategy focusing on the restriction of the flexible bond rotation of OX2R selective agonist YNT-185 (1) and their agonist activities against orexin receptors were evaluated. The 1,7-naphthalene derivatives showed superior agonist activity than 2,7-naphthalene derivatives, suggesting that the bent form of 1 would be favorable for the agonist activity. The conformational analysis of 1,7-naphthalene derivatives indicated that the twisting of the amide unit out from the naphthalene plane is important for the enhancement of activity. The introduction of a methyl group on the 2-position of 1,7-naphthalene ring effectively increased the activity, which led to the discovery of the potent OX2R agonist 28c (EC50 = 9.21 nM for OX2R, 148 nM for OX1R). The structure–activity relationship results were well supported by a comparison of the docking simulation results of the most potent derivative 28c with an active state of agonist-bound OX2R cryo-EM SPA structure. These results suggested important information for understanding the active conformation and orientation of pharmacophores in the orexin receptor agonists, which is expected as a chemotherapeutic agent for the treatment of narcolepsy.
Original language | English (US) |
---|---|
Article number | 128530 |
Journal | Bioorganic and Medicinal Chemistry Letters |
Volume | 59 |
DOIs | |
State | Published - Mar 1 2022 |
Keywords
- Agonist
- Conformational restriction
- GPCR
- Naphthalene
- OX1R
- OX2R
- Orexin
- Orexin receptor
ASJC Scopus subject areas
- Biochemistry
- Molecular Medicine
- Molecular Biology
- Pharmaceutical Science
- Drug Discovery
- Clinical Biochemistry
- Organic Chemistry