TY - JOUR
T1 - Deoxycytidine kinase augments ATM-mediated DNA repair and contributes to radiation resistance
AU - Bunimovich, Yuri L.
AU - Nair-Gill, Evan
AU - Riedinger, Mireille
AU - McCracken, Melissa N.
AU - Cheng, Donghui
AU - McLaughlin, Jami
AU - Radu, Caius G.
AU - Witte, Owen N.
PY - 2014/8/7
Y1 - 2014/8/7
N2 - Efficient and adequate generation of deoxyribonucleotides is critical to successful DNA repair. We show that ataxia telangiectasia mutated (ATM) integrates the DNA damage response with DNA metabolism by regulating the salvage of deoxyribonucleosides. Specifically, ATM phosphorylates and activates deoxycytidine kinase (dCK) at serine 74 in response to ionizing radiation (IR). Activation of dCK shifts its substrate specificity toward deoxycytidine, increases intracellular dCTP pools post IR, and enhances the rate of DNA repair. Mutation of a single serine 74 residue has profound effects on murine T and B lymphocyte development, suggesting that post-translational regulation of dCK may be important in maintaining genomic stability during hematopoiesis. Using [18F]-FAC, a dCK-specific positron emission tomography (PET) probe, we visualized and quantified dCK activation in tumor xenografts after IR, indicating that dCK activation could serve as a biomarker for ATM function and DNA damage response in vivo. In addition, dCK-deficient leukemia cell lines and murine embryonic fibroblasts exhibited increased sensitivity to IR, indicating that pharmacologic inhibition of dCK may be an effective radiosensitization strategy.
AB - Efficient and adequate generation of deoxyribonucleotides is critical to successful DNA repair. We show that ataxia telangiectasia mutated (ATM) integrates the DNA damage response with DNA metabolism by regulating the salvage of deoxyribonucleosides. Specifically, ATM phosphorylates and activates deoxycytidine kinase (dCK) at serine 74 in response to ionizing radiation (IR). Activation of dCK shifts its substrate specificity toward deoxycytidine, increases intracellular dCTP pools post IR, and enhances the rate of DNA repair. Mutation of a single serine 74 residue has profound effects on murine T and B lymphocyte development, suggesting that post-translational regulation of dCK may be important in maintaining genomic stability during hematopoiesis. Using [18F]-FAC, a dCK-specific positron emission tomography (PET) probe, we visualized and quantified dCK activation in tumor xenografts after IR, indicating that dCK activation could serve as a biomarker for ATM function and DNA damage response in vivo. In addition, dCK-deficient leukemia cell lines and murine embryonic fibroblasts exhibited increased sensitivity to IR, indicating that pharmacologic inhibition of dCK may be an effective radiosensitization strategy.
UR - http://www.scopus.com/inward/record.url?scp=84905455193&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905455193&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0104125
DO - 10.1371/journal.pone.0104125
M3 - Article
C2 - 25101980
AN - SCOPUS:84905455193
SN - 1932-6203
VL - 9
JO - PLoS One
JF - PLoS One
IS - 8
M1 - e104125
ER -