TY - JOUR
T1 - Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia
AU - Saxena, Vijay
AU - Shivakumar, Pranavkumar
AU - Sabla, Gregg
AU - Mourya, Reena
AU - Chougnet, Claire
AU - Bezerra, Jorge A.
PY - 2011/9/28
Y1 - 2011/9/28
N2 - Biliary atresia is the most common cholangiopathy of childhood. During infancy, an idiopathic activation of the neonatal immune system targets the biliary epithelium, obstructs bile ducts, and disrupts the anatomic continuity between the liver and the intestine. Here, we use a model of virus-induced biliary atresia in newborn mice to trace the initiating pathogenic disease mechanisms to resident plasmacytoid (pDCs) and conventional (cDCs) dendritic cells. We found pDCs to be the most abundant DC population in the livers of newborn mice, and we observed pDCs in the livers of infants at the time of diagnosis. In the livers of newborn mice, cDCs spontaneously overexpressed the costimulatory molecule CD80 soon after birth, and pDCs produced the cytokine interleukin-15 (IL-15) in response to a virus insult. Both subtypes of primed DCs were required for the proliferation of T lymphocytes and the activation of natural killer cells. Disruption of this cellular network by depletion of pDCs or blockade of IL-15 signaling in mice in vivo prevented epithelial injury, maintained anatomic continuity of the bile duct, and promoted long-term survival. These findings identify cellular triggers of biliary injury and have implications for future therapies to block the progression of biliary atresia and liver disease.
AB - Biliary atresia is the most common cholangiopathy of childhood. During infancy, an idiopathic activation of the neonatal immune system targets the biliary epithelium, obstructs bile ducts, and disrupts the anatomic continuity between the liver and the intestine. Here, we use a model of virus-induced biliary atresia in newborn mice to trace the initiating pathogenic disease mechanisms to resident plasmacytoid (pDCs) and conventional (cDCs) dendritic cells. We found pDCs to be the most abundant DC population in the livers of newborn mice, and we observed pDCs in the livers of infants at the time of diagnosis. In the livers of newborn mice, cDCs spontaneously overexpressed the costimulatory molecule CD80 soon after birth, and pDCs produced the cytokine interleukin-15 (IL-15) in response to a virus insult. Both subtypes of primed DCs were required for the proliferation of T lymphocytes and the activation of natural killer cells. Disruption of this cellular network by depletion of pDCs or blockade of IL-15 signaling in mice in vivo prevented epithelial injury, maintained anatomic continuity of the bile duct, and promoted long-term survival. These findings identify cellular triggers of biliary injury and have implications for future therapies to block the progression of biliary atresia and liver disease.
UR - http://www.scopus.com/inward/record.url?scp=80053265930&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053265930&partnerID=8YFLogxK
U2 - 10.1126/scitranslmed.3002069
DO - 10.1126/scitranslmed.3002069
M3 - Article
C2 - 21957172
AN - SCOPUS:80053265930
SN - 1946-6234
VL - 3
JO - Science Translational Medicine
JF - Science Translational Medicine
IS - 102
M1 - 102ra94
ER -