Abstract
Microwave transmission through potassium by Dunifer, Sambles, and Mace [J. Phys. Condens. Matter 1, 875 (1989)] in a perpendicular magnetic field shows five signals. They are Gantmakher-Kaner (GK) oscillations, conduction-electron-spin resonance, high-frequency oscillations, cyclotron resonance, and cyclotron-resonance subharmonics. Only the spin resonance has been successfully explained using a free-electron model. However, such a model predicts GK oscillations which are too large by several orders of magnitude. Lacueva and Overhauser [Phys. Rev. B 48, 16t935 (1993)] have shown that charge-density-wave (CDW) energy gaps which cut through the Fermi surface reduce the GK signal. CDW gaps also create a small Fermi-surface cylinder. The high-frequency oscillations were shown to result from Landau-level quantization in the cylinder. Recently we found that the anomalous microwave surface resistance, observed by Grimes and Kip [Phys. Rev. 132, 1991 (1963)], can be explained only if the cylinder axis is tilted ∼45° with respect to the [110] crystal direction perpendicular to the surface. (Such a tilt was predicted by Giuliani and Overhauser [Phys. Rev. B 20, 1328 (1979)].) In this study we show that oscillatory motions, parallel to the field, of electrons in the tilted cylinder cause the cyclotron-resonance transmission. This signal and its subharmonics would be completely absent without the tilt. Consequently, four of the five transmission signals require a CDW broken symmetry.
Original language | English (US) |
---|---|
Pages (from-to) | 1398-1407 |
Number of pages | 10 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 55 |
Issue number | 3 |
DOIs | |
State | Published - 1997 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics