TY - JOUR
T1 - Converting lateral scanning into axial focusing to speed up three-dimensional microscopy
AU - Chakraborty, Tonmoy
AU - Chen, Bingying
AU - Daetwyler, Stephan
AU - Chang, Bo Jui
AU - Vanderpoorten, Oliver
AU - Sapoznik, Etai
AU - Kaminski, Clemens F.
AU - Knowles, Tuomas P.J.
AU - Dean, Kevin M.
AU - Fiolka, Reto
N1 - Funding Information:
We would like to thank Divya Rajendran, Dr Dagan Segal, and Dr David Saucier for their help with the preparation of the zebrafish samples. Furthermore, we want to express our gratitude to Vladimir Zhemkov and Hua Zhang for preparing the fixed brain slice. We also thank Ryan McGorty for providing us with his Zemax model of a ×40 objective for simulation and Alfred Millett-Sikking for his help in getting started with the Zemax simulation. Finally, we thank James Manton for his help in simulating the focused and defocused PSFs. This research was funded by grants from the Cancer Prevention Research Institute of Texas (RR160057 to R.F.) and the National Institutes of Health (F32GM117793 to K.M.D. and R33CA235254 and R35GM133522 to R.F.). C.K. acknowledges funding from the UK Engineering and Physical Sciences Research Council, EPSRC (grants EP/L015889/1 and EP/H018301/1), the Wellcome Trust (grants 3-3249/Z/16/Z and 089703/Z/09/Z) and the UK Medical Research Council, MRC (grants MR/K015850/1 and MR/K02292X/1), MedImmune, and Infinitus (China) Ltd.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - In optical microscopy, the slow axial scanning rate of the objective or the sample has traditionally limited the speed of volumetric imaging. Recently, by conjugating either a movable mirror to the image plane in a remote-focusing geometry or an electrically tuneable lens (ETL) to the back focal plane, rapid axial scanning has been achieved. However, mechanical actuation of a mirror limits the axial scanning rate (usually only 10–100 Hz for piezoelectric or voice coil-based actuators), while ETLs introduce spherical and higher-order aberrations that prevent high-resolution imaging. In an effort to overcome these limitations, we introduce a novel optical design that transforms a lateral-scan motion into a spherical aberration-free axial scan that can be used for high-resolution imaging. Using a galvanometric mirror, we scan a laser beam laterally in a remote-focusing arm, which is then back-reflected from different heights of a mirror in the image space. We characterize the optical performance of this remote-focusing technique and use it to accelerate axially swept light-sheet microscopy by an order of magnitude, allowing the quantification of rapid vesicular dynamics in three dimensions. We also demonstrate resonant remote focusing at 12 kHz with a two-photon raster-scanning microscope, which allows rapid imaging of brain tissues and zebrafish cardiac dynamics with diffraction-limited resolution.
AB - In optical microscopy, the slow axial scanning rate of the objective or the sample has traditionally limited the speed of volumetric imaging. Recently, by conjugating either a movable mirror to the image plane in a remote-focusing geometry or an electrically tuneable lens (ETL) to the back focal plane, rapid axial scanning has been achieved. However, mechanical actuation of a mirror limits the axial scanning rate (usually only 10–100 Hz for piezoelectric or voice coil-based actuators), while ETLs introduce spherical and higher-order aberrations that prevent high-resolution imaging. In an effort to overcome these limitations, we introduce a novel optical design that transforms a lateral-scan motion into a spherical aberration-free axial scan that can be used for high-resolution imaging. Using a galvanometric mirror, we scan a laser beam laterally in a remote-focusing arm, which is then back-reflected from different heights of a mirror in the image space. We characterize the optical performance of this remote-focusing technique and use it to accelerate axially swept light-sheet microscopy by an order of magnitude, allowing the quantification of rapid vesicular dynamics in three dimensions. We also demonstrate resonant remote focusing at 12 kHz with a two-photon raster-scanning microscope, which allows rapid imaging of brain tissues and zebrafish cardiac dynamics with diffraction-limited resolution.
UR - http://www.scopus.com/inward/record.url?scp=85091184294&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091184294&partnerID=8YFLogxK
U2 - 10.1038/s41377-020-00401-9
DO - 10.1038/s41377-020-00401-9
M3 - Article
C2 - 33024553
AN - SCOPUS:85091184294
SN - 2047-7538
VL - 9
JO - Light: Science and Applications
JF - Light: Science and Applications
IS - 1
M1 - 165
ER -