Control of cardiac contraction by sodium: Promises, reckonings, and new beginnings

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Several generations of cardiac physiologists have verified that basal cardiac contractility depends strongly on the transsarcolemmal Na gradient, and the underlying molecular mechanisms that link cardiac excitation-contraction coupling (ECC) to the Na gradient have been elucidated in good detail for more than 30 years. In brief, small increases of cytoplasmic Na push cardiac (NCX1) Na/Ca exchangers to increase contractility by increasing the myocyte Ca load. Accordingly, basal cardiac contractility is expected to be physiologically regulated by pathways that modify the cardiac Na gradient and the function of Na transporters. Assuming that this expectation is correct, it remains to be elucidated how in detail signaling pathways affecting the cardiac Na gradient are controlled in response to changing cardiac output requirements. Some puzzle pieces that may facilitate progress are outlined in this short review. Key open issues include (1) whether the concept of local Na gradients is viable, (2) how in detail Na channels, Na transporters and Na/K pumps are regulated by lipids and metabolic processes, (3) the physiological roles of Na/K pump inactivation, and (4) the possibility that key diffusible signaling molecules remain to be discovered.

Original languageEnglish (US)
Article number102129
JournalCell Calcium
StatePublished - Jan 2020


  • Cardiac excitation contraction coupling
  • Glutathionylation
  • Ischemia
  • Local sodium gradient
  • Simulation
  • Sodium calcium exchange
  • Sodium gradient
  • Sodium potassium pump
  • TRP channels

ASJC Scopus subject areas

  • Physiology
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Control of cardiac contraction by sodium: Promises, reckonings, and new beginnings'. Together they form a unique fingerprint.

Cite this