Combination bromo- and extraterminal domain and poly (ADP-ribose) polymerase inhibition synergistically enhances DNA damage and inhibits neuroblastoma tumorigenesis

Jillian C. Jacobson, Jingbo Qiao, Rachael A. Clark, Dai H. Chung

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Purpose: JQ1 is a bromo- and extraterminal (BET) domain inhibitor that downregulates MYC expression and impairs the DNA damage response. Poly (ADP-ribose) polymerase (PARP) inhibitors prevent DNA damage sensing and repair. We hypothesized that JQ1 would promote a DNA repair-deficient phenotype that sensitizes neuroblastoma cells to PARP inhibition. Methods: Four human neuroblastoma cell lines were examined: two MYCN-amplified (BE(2)-C and IMR-32), and two non-MYCN-amplified (SK-N-SH and SH-SY5Y). Cells were treated with JQ1 (BET inhibitor), Olaparib (PARP inhibitor), or in combination to assess for therapeutic synergy of JQ1 and Olaparib. Treated cells were harvested and analyzed. Quantitative assessment of combination treatment synergy was performed using the median effect principle of Chou and Talalay. Results: Combination treatment with Olaparib decreased the IC50 of JQ1 by 19.9-fold, 2.0-fold, 12.1-fold, and 2.0-fold in the BE(2)-C, IMR-32, SK-N-SH, and SH-SY5Y cell lines, respectively. In the MYCN-amplified cell lines, BE(2)-C and IMR-32, combination treatment decreased gene expression of MYCN relative to single-drug treatment alone or control. Combination treatment decreased protein expression of DNA repair proteins Ku80 and RAD51, led to accumulation of DNA damage marker phospho-histone H2A.X, and increased caspase activity. In the non-MYCN-amplified cell lines, SK-N-SH and SH-SY5Y, combination treatment induced G0/G1 cell cycle arrest. Conclusions: Combination BET and PARP inhibition synergistically inhibited neuroblastoma tumorigenesis in vitro. In MYCN-amplified neuroblastoma cells, this effect may be induced by downregulation of MYCN transcription, defects in DNA repair, accumulation of DNA damage, and apoptosis. In non-MYCN-amplified cell lines, combination treatment induced cell cycle arrest.

Original languageEnglish (US)
Article number103
JournalDiscover Oncology
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

Keywords

  • BET
  • JQ1
  • Neuroblastoma
  • Olaparib
  • PARP

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Oncology
  • Endocrinology
  • Endocrine and Autonomic Systems
  • Cancer Research

Fingerprint

Dive into the research topics of 'Combination bromo- and extraterminal domain and poly (ADP-ribose) polymerase inhibition synergistically enhances DNA damage and inhibits neuroblastoma tumorigenesis'. Together they form a unique fingerprint.

Cite this