Abstract
Background: Intestinal inflammation disrupts the microbiota composition leading to an expansion of Enterobacteriaceae family members (dysbiosis). Associated with this shift in microbiota composition is a profound change in the metabolic landscape of the intestine. It is unclear how changes in metabolite availability during gut inflammation impact microbial and host physiology. Results: We investigated microbial and host lactate metabolism in murine models of infectious and non-infectious colitis. During inflammation-associated dysbiosis, lactate levels in the gut lumen increased. The disease-associated spike in lactate availability was significantly reduced in mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells. Commensal E. coli and pathogenic Salmonella, representative Enterobacteriaceae family members, utilized lactate via the respiratory L-lactate dehydrogenase LldD to increase fitness. Furthermore, mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells exhibited lower levels of inflammation in a model of non-infectious colitis. Conclusions: The release of lactate by intestinal epithelial cells during gut inflammation impacts the metabolism of gut-associated microbial communities. These findings suggest that during intestinal inflammation and dysbiosis, changes in metabolite availability can perpetuate colitis-associated disturbances of microbiota composition. [MediaObject not available: see fulltext.].
Original language | English (US) |
---|---|
Article number | 200 |
Journal | Microbiome |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Externally published | Yes |
Keywords
- Gut inflammation
- Host-microbe interactions
- Lactate metabolism
ASJC Scopus subject areas
- Microbiology
- Microbiology (medical)