Chronic IL-1 exposure drives LNCaP cells to evolve androgen and AR independence

Haley C. Dahl, Mohammed Kanchwala, Shayna E. Thomas-Jardin, Amrit Sandhu, Preethi Kanumuri, Afshan F. Nawas, Chao Xing, Chenchu Lin, Daniel E. Frigo, Nikki A. Delk

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Chronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR-independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1β. Cells were treated with IL-1α, IL-1β, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation-induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA-mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.

Original languageEnglish (US)
Article numbere0242970
JournalPloS one
Issue number12 December
StatePublished - Dec 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Chronic IL-1 exposure drives LNCaP cells to evolve androgen and AR independence'. Together they form a unique fingerprint.

Cite this