TY - JOUR
T1 - Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia
AU - Liu, Peiwei
AU - Lou, Xiaochu
AU - Wingfield, Jenna L.
AU - Lin, Jianfeng
AU - Nicastro, Daniela
AU - Lechtreck, Karl
N1 - Funding Information:
We thank D. Stoddard for management of the University of Texas Southwestern Medical Center cryo-electron microscope facility, which is funded in part by a Cancer Prevention and Research Institute of Texas Core Facility Award (RP170644). This
Funding Information:
We are grateful to Kaiyao Huang, Dennis Diener, and Joel Rosenbaum (Yale University) for providing the PKD2-GFP vector and antibodies to PKD2, and to Gang Fu and Kai Cai (University of Texas Southwestern Medical Center) for providing tomographic data for reanalysis. We thank our colleagues Robert Bloodgood (University of Virginia), William Dentler (University of Kansas), and Juan Wang (Rutgers University) for discussion and critical reading of the manuscript. We acknowledge expert assistance by the University of Georgia’s Proteomics and Mass Spectrometry Facility, which is funded in part by the National Institutes of Health (S10RR028859) and the Biomedical Microscopy Core.
Funding Information:
We are grateful to Kaiyao Huang, Dennis Diener, and Joel Rosenbaum (Yale University) for providing the PKD2-GFP vector and antibodies to PKD2, and to Gang Fu and Kai Cai (University of Texas Southwestern Medical Center) for providing tomographic data for reanalysis. We thank our colleagues Robert Bloodgood (University of Virginia), William Dentler (University of Kansas), and Juan Wang (Rutgers University) for discussion and critical reading of the manuscript. We acknowledge expert assistance by the University of Georgia's Proteomics and Mass Spectrometry Facility, which is funded in part by the National Institutes of Health (S10RR028859) and the Biomedical Microscopy Core. We thank D. Stoddard for management of the University of Texas Southwestern Medical Center cryo-electron microscope facility, which is funded in part by a Cancer Prevention and Research Institute of Texas Core Facility Award (RP170644). This study was supported by the National Institutes of Health (GM110413 to K. Lechtreck and GM083122 to D. Nicastro), and the Cancer Prevention and Research Institute of Texas (grant RR140082 to D. Nicastro). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Funding Information:
study was supported by the National Institutes of Health (GM110413 to K. Lechtreck and GM083122 to D. Nicastro), and the Cancer Prevention and Research Institute of Texas (grant RR140082 to D. Nicastro). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors declare no competing financial interests.
Publisher Copyright:
© 2020 Liu et al. This article is distributed under the terms of an Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution-Noncommercial-Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Mutations in the channel protein PKD2 cause autosomal dominant polycystic kidney disease, but the function of PKD2 in cilia remains unclear. Here, we show that PKD2 targets and anchors mastigonemes, filamentous polymers of the glycoprotein MST1, to the extracellular surface of Chlamydomonas cilia. PKD2-mastigoneme complexes physically connect to the axonemal doublets 4 and 8, positioning them perpendicular to the plane of ciliary beating. pkd2 mutant cilia lack mastigonemes, and mutant cells swim with reduced velocity, indicating a motility-related function of the PKD2-mastigoneme complex. Association with both the axoneme and extracellular structures supports a mechanosensory role of Chlamydomonas PKD2. We propose that PKD2-mastigoneme arrays, on opposing sides of the cilium, could perceive forces during ciliary beating and transfer these signals to locally regulate the response of the axoneme.
AB - Mutations in the channel protein PKD2 cause autosomal dominant polycystic kidney disease, but the function of PKD2 in cilia remains unclear. Here, we show that PKD2 targets and anchors mastigonemes, filamentous polymers of the glycoprotein MST1, to the extracellular surface of Chlamydomonas cilia. PKD2-mastigoneme complexes physically connect to the axonemal doublets 4 and 8, positioning them perpendicular to the plane of ciliary beating. pkd2 mutant cilia lack mastigonemes, and mutant cells swim with reduced velocity, indicating a motility-related function of the PKD2-mastigoneme complex. Association with both the axoneme and extracellular structures supports a mechanosensory role of Chlamydomonas PKD2. We propose that PKD2-mastigoneme arrays, on opposing sides of the cilium, could perceive forces during ciliary beating and transfer these signals to locally regulate the response of the axoneme.
UR - http://www.scopus.com/inward/record.url?scp=85084169707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084169707&partnerID=8YFLogxK
U2 - 10.1083/JCB.202001122
DO - 10.1083/JCB.202001122
M3 - Article
C2 - 32348466
AN - SCOPUS:85084169707
SN - 0021-9525
VL - 219
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
M1 - 202001122
ER -