TY - JOUR
T1 - Cardiac oxidase systems mediate oxygen metabolite reperfusion injury
AU - Brown, J. M.
AU - Grosso, M. A.
AU - Whitman, G. J.
AU - Terada, L. S.
AU - Repine, J. E.
AU - Harken, A. H.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1988
Y1 - 1988
N2 - To investigate the mechanism of cardiac ischemia reperfusion injury, we fed rats tungsten (3 weeks) to inhibit molybdenum-dependent oxidase enzymes. Tungsten-treated isolated perfusion hearts (Langendorff, ventricular balloon, 37° C) had negligible xanthine oxidase activity (< 0.3 vs > 8.0 U/gm myocardium) and improved recovery of developed pressure (DP), contractility (+ dP/dt), and compliance (-dP/dt) after 20 minutes of global ischemia (37° C) and 40 minutes of reperfusion. Furthermore, the addition of dimethylthiourea, a freely diffusible O2 metabolite scavenger, but not equimolar urea, a non-O2 metabolite scavenger, improved recovery. High-dose urea improved recovery more than control but less than dimethylthiourea. Combining tungsten and equimolar urea improved recovery the same as dimethylthiourea. We conclude that: (1) inhibition of myocardial oxidase enzymes (including xanthine oxidase) improves recovery of ventricular function after ischemia and reperfusion in the isolated rat heart, (2) infusion (during reperfusion) of a permeable O2 metabolite scavenger (dimethylthiourea) but not equimolar urea improves recovery of ventricular function, (3) infusion of higher concentrations of urea improves postischemic function, and (4) myocardial reperfusion injury is distinguishable from ischemic injury.
AB - To investigate the mechanism of cardiac ischemia reperfusion injury, we fed rats tungsten (3 weeks) to inhibit molybdenum-dependent oxidase enzymes. Tungsten-treated isolated perfusion hearts (Langendorff, ventricular balloon, 37° C) had negligible xanthine oxidase activity (< 0.3 vs > 8.0 U/gm myocardium) and improved recovery of developed pressure (DP), contractility (+ dP/dt), and compliance (-dP/dt) after 20 minutes of global ischemia (37° C) and 40 minutes of reperfusion. Furthermore, the addition of dimethylthiourea, a freely diffusible O2 metabolite scavenger, but not equimolar urea, a non-O2 metabolite scavenger, improved recovery. High-dose urea improved recovery more than control but less than dimethylthiourea. Combining tungsten and equimolar urea improved recovery the same as dimethylthiourea. We conclude that: (1) inhibition of myocardial oxidase enzymes (including xanthine oxidase) improves recovery of ventricular function after ischemia and reperfusion in the isolated rat heart, (2) infusion (during reperfusion) of a permeable O2 metabolite scavenger (dimethylthiourea) but not equimolar urea improves recovery of ventricular function, (3) infusion of higher concentrations of urea improves postischemic function, and (4) myocardial reperfusion injury is distinguishable from ischemic injury.
UR - http://www.scopus.com/inward/record.url?scp=0023786212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023786212&partnerID=8YFLogxK
M3 - Article
C2 - 3135626
AN - SCOPUS:0023786212
SN - 0039-6060
VL - 104
SP - 266
EP - 271
JO - Surgery (United States)
JF - Surgery (United States)
IS - 2
ER -