Abstract
Despite major advancement in coating graphene layers at material surfaces, challenges still exist towards achieving rapid heating and cooling under low energy consumption. Herein, atmospheric pressure chemical vapor deposition (APCVD) method was adopted to coat carbide-bonded graphene at the surface of zirconia substrate with a 2.7 cm diameter and a 1 cm thickness. The graphene coated zirconia substrate can achieve rapid thermal cycling with as high as approximately 50 °C/s of average heating rate at 150–320 °C temperature range using a low input voltage (12 V) and power (48 W). That is mainly due to the formation of highly qualified graphene and single-wall carbon nanotubes at the carburization layer, which is confirmed by the Raman spectra. The excellent electrothermal response characteristics is expectantly useful for rapid thermal cycling in injection molding thin-wall parts with high processing temperature (higher than 250 °C) under operation safety and low energy consumption, which is obviously absent in this emerging research area.
Original language | English (US) |
---|---|
Pages (from-to) | 24318-24323 |
Number of pages | 6 |
Journal | Ceramics International |
Volume | 45 |
Issue number | 18 |
DOIs | |
State | Published - Dec 15 2019 |
Externally published | Yes |
Keywords
- Chemical vapor deposition
- Electrothermal response
- Graphene
- Rapid thermal cycling
- Zirconia
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry