Abstract
The mammalian renal collecting duct increases its water permeability in response to antidiuretic hormone (ADH). ADH causes cytoplasmic endosomes containing the water channel, aquaporin 2 (AQP2), to fuse with the apical membrane so that the water permeability of the tubule increases many times above baseline. SNARE proteins are involved in the docking and fusion of vesicles with the cell membrane in neuron synapses. Whether these proteins are involved in the fusion of vesicles to the cell membrane in other tissues is not entirely clear. In the present study, we examined the role of SNARE proteins in the insertion of water channels in the collecting-duct response to ADH by using botulinum toxins A, B and C. Toxins isolated from clostridium botulinum are specific proteases that cleave different SNARE proteins and inactivate them. Tubules were perfused in vitro with botulinum toxin in the perfusate (50 nM for A and B and 15 nM for C). ADH (200 pM) was then added to the bath after baseline measurements of osmotic water permeability (P f) and the change in P f was followed for one hour. Botulinum toxins significantly inhibited the maximum P f by approximately 50%. Botulinum toxins A and C also decreased the rate of rise of P f. Thus, SNARE proteins are involved in the insertion of the water channels in the collecting duct.
Original language | English (US) |
---|---|
Pages (from-to) | 109-116 |
Number of pages | 8 |
Journal | Journal of Membrane Biology |
Volume | 204 |
Issue number | 3 |
DOIs | |
State | Published - Apr 2005 |
Keywords
- In vitro microperfusion
- Osmotic water permeability
- SNARE proteins
ASJC Scopus subject areas
- Biophysics
- Physiology
- Cell Biology