Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice

Andreas C. Chai, Miao Cui, Francesco Chemello, Hui Li, Kenian Chen, Wei Tan, Ayhan Atmanli, John R. McAnally, Yu Zhang, Lin Xu, Ning Liu, Rhonda Bassel-Duby, Eric N. Olson

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

The most common form of genetic heart disease is hypertrophic cardiomyopathy (HCM), which is caused by variants in cardiac sarcomeric genes and leads to abnormal heart muscle thickening. Complications of HCM include heart failure, arrhythmia and sudden cardiac death. The dominant-negative c.1208G>A (p.R403Q) pathogenic variant (PV) in β-myosin (MYH7) is a common and well-studied PV that leads to increased cardiac contractility and HCM onset. In this study we identify an adenine base editor and single-guide RNA system that can efficiently correct this human PV with minimal bystander editing and off-target editing at selected sites. We show that delivery of base editing components rescues pathological manifestations of HCM in induced pluripotent stem cell cardiomyocytes derived from patients with HCM and in a humanized mouse model of HCM. Our findings demonstrate the potential of base editing to treat inherited cardiac diseases and prompt the further development of adenine base editor-based therapies to correct monogenic variants causing cardiac disease.

Original languageEnglish (US)
Pages (from-to)401-411
Number of pages11
JournalNature medicine
Volume29
Issue number2
DOIs
StatePublished - Feb 2023

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice'. Together they form a unique fingerprint.

Cite this