TY - JOUR
T1 - Association of serum metabolites and gut microbiota at hospital admission with nosocomial infection development in patients with cirrhosis
AU - Bajaj, Jasmohan S.
AU - Reddy, K. Rajender
AU - Tandon, Puneeta
AU - Garcia-Tsao, Guadalupe
AU - Kamath, Patrick S.
AU - O'Leary, Jacqueline G.
AU - Wong, Florence
AU - Lai, Jennifer
AU - Vargas, Hugo
AU - Thuluvath, Paul J.
AU - Subramanian, Ram M.
AU - Pena-Rodriguez, Marcela
AU - Sikaroodi, Masoumeh
AU - Thacker, Leroy R.
AU - Gillevet, Patrick M.
N1 - Funding Information:
Funding was provided by Veterans Affairs Merit Review 2I0CX001076 and investigator‐initiated grants from Mallinckrodt and Grifols Pharmaceuticals. The funders did not have any role in in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.
Publisher Copyright:
© 2022 American Association for the Study of Liver Diseases.
PY - 2022/12
Y1 - 2022/12
N2 - Cirrhosis is complicated by a high rate of nosocomial infections (NIs), which result in poor outcomes and are challenging to predict using clinical variables alone. Our aim was to determine predictors of NI using admission serum metabolomics and gut microbiota in inpatients with cirrhosis. In this multicenter inpatient cirrhosis study, serum was collected on admission for liquid chromatography–mass spectrometry metabolomics, and a subset provided stool for 16SrRNA analysis. Hospital course, including NI development and death, were analyzed. Metabolomic analysis using analysis of covariance (ANCOVA) (demographics, Model for End-Stage Liver Disease [MELD] admission score, white blood count [WBC], rifaximin, and infection status adjusted) and random forest analyses for NI development were performed. Additional values of serum metabolites over clinical variables toward NI were evaluated using logistic regression. Stool microbiota and metabolomic correlations were compared in patients with and without NI development. A total of 602 patients (231 infection admissions) were included; 101 (17%) developed NIs, which resulted in worse inpatient outcomes, including intensive care unit transfer, organ failure, and death. A total of 127 patients also gave stool samples, and 20 of these patients developed NIs. The most common NIs were spontaneous bacterial peritonitis followed by urinary tract infection, Clostridioides difficile, and pneumonia. A total of 247 metabolites were significantly altered on ANCOVA. Higher MELD scores (odds ratio, 1.05; p < 0.0001), admission infection (odds ratio, 3.54; p < 0.0001), and admission WBC (odds ratio, 1.05; p = 0.04) predicted NI (area under the curve, 0.74), which increased to 0.77 (p = 0.05) with lower 1-linolenoyl-glycerolphosphocholine (GPC) and 1-stearoyl-GPC and higher N-acetyltryptophan and N-acetyl isoputreanine. Commensal microbiota were lower and pathobionts were higher in those who developed NIs. Microbial–metabolite correlation networks were complex and dense in patients with NIs, especially sub-networks centered on Ruminococcaceae and Pseudomonadaceae. NIs are common and associated with poor outcomes in cirrhosis. Admission gut microbiota in patients with NIs showed higher pathobionts and lower commensal microbiota. Microbial–metabolomic correlations were more complex, dense, and homogeneous among those who developed NIs, indicating greater linkage strength. Serum metabolites and gut microbiota on admission are associated with NI development in cirrhosis.
AB - Cirrhosis is complicated by a high rate of nosocomial infections (NIs), which result in poor outcomes and are challenging to predict using clinical variables alone. Our aim was to determine predictors of NI using admission serum metabolomics and gut microbiota in inpatients with cirrhosis. In this multicenter inpatient cirrhosis study, serum was collected on admission for liquid chromatography–mass spectrometry metabolomics, and a subset provided stool for 16SrRNA analysis. Hospital course, including NI development and death, were analyzed. Metabolomic analysis using analysis of covariance (ANCOVA) (demographics, Model for End-Stage Liver Disease [MELD] admission score, white blood count [WBC], rifaximin, and infection status adjusted) and random forest analyses for NI development were performed. Additional values of serum metabolites over clinical variables toward NI were evaluated using logistic regression. Stool microbiota and metabolomic correlations were compared in patients with and without NI development. A total of 602 patients (231 infection admissions) were included; 101 (17%) developed NIs, which resulted in worse inpatient outcomes, including intensive care unit transfer, organ failure, and death. A total of 127 patients also gave stool samples, and 20 of these patients developed NIs. The most common NIs were spontaneous bacterial peritonitis followed by urinary tract infection, Clostridioides difficile, and pneumonia. A total of 247 metabolites were significantly altered on ANCOVA. Higher MELD scores (odds ratio, 1.05; p < 0.0001), admission infection (odds ratio, 3.54; p < 0.0001), and admission WBC (odds ratio, 1.05; p = 0.04) predicted NI (area under the curve, 0.74), which increased to 0.77 (p = 0.05) with lower 1-linolenoyl-glycerolphosphocholine (GPC) and 1-stearoyl-GPC and higher N-acetyltryptophan and N-acetyl isoputreanine. Commensal microbiota were lower and pathobionts were higher in those who developed NIs. Microbial–metabolite correlation networks were complex and dense in patients with NIs, especially sub-networks centered on Ruminococcaceae and Pseudomonadaceae. NIs are common and associated with poor outcomes in cirrhosis. Admission gut microbiota in patients with NIs showed higher pathobionts and lower commensal microbiota. Microbial–metabolomic correlations were more complex, dense, and homogeneous among those who developed NIs, indicating greater linkage strength. Serum metabolites and gut microbiota on admission are associated with NI development in cirrhosis.
UR - http://www.scopus.com/inward/record.url?scp=85136658840&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85136658840&partnerID=8YFLogxK
U2 - 10.1002/lt.26552
DO - 10.1002/lt.26552
M3 - Article
C2 - 36017804
AN - SCOPUS:85136658840
SN - 1527-6465
VL - 28
SP - 1831
EP - 1840
JO - Liver Transplantation
JF - Liver Transplantation
IS - 12
ER -