Anthrax toxin: Pathologic effects on the cardiovascular system

Honey B. Golden, Linley E. Watson, Hind Lal, Suresh K. Verma, Donald M. Foster, Shu Ru Kuo, Avadhesh Sharma, Arthur Frankel, David E. Dostal

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Anthrax is a disease caused by infection with spores from the bacteria Bacillus anthracis. After entering the body, the spores germinate into bacteria and secrete a toxin that causes local edema and, in systemic infections, cardiovascular collapse and death. The toxin is a tripartite polypeptide, consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF), which have key roles in the bacterial pathogenesis and disease progression. PA facilitates transfer of LF and EF to the cytosol. Lethal toxin is a zinc metalloproteinase, which has the capacity to inactivate mitogen-activated protein (MAP) kinase kinase (MEK) and stimulates the release of sepsis-related cytokines tumor necrosis factor-alpha and interleukin-1beta. Edema factor is a calmodulin (CaM)-dependent adenylate cyclase, which increases levels of cyclic AMP, causing impaired neutrophil function and disruption of water balance that ultimately results in massive tissue edema. Together, the toxins effectively inhibit host innate and adaptive immune responses, allowing the bacteria to grow unrestrained and overwhelming any resistance. Clinically, inhalational anthrax presents in a biphasic pattern with initial nonspecific "flu-like" symptoms nausea and vomiting 1 to 4 days after exposure, followed by severe illness with dyspnea, high fever and circulatory shock. The latter symptoms represent a terminal stage and treatment is often ineffective when started at that time. Key indicators of early anthrax cardiovascular-related pathogenesis include mediastinal widening in association with pleural effusion and edema. In this review, we describe the current understanding of anthrax toxins on cellular function in the context of cardiovascular function and discuss potential therapeutic strategies.

Original languageEnglish (US)
Pages (from-to)2335-2357
Number of pages23
JournalFrontiers in Bioscience
Issue number6
StatePublished - Jan 1 2009


  • Anthrax
  • Anthrax receptor 1/2
  • Calmodulin
  • Cardiomyocytes
  • Edema factor
  • Heart failure
  • Hypotension
  • Lethal factor
  • Mitogen-activated protein kinase
  • Phospholamban
  • Protective antigen
  • Reivew

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology


Dive into the research topics of 'Anthrax toxin: Pathologic effects on the cardiovascular system'. Together they form a unique fingerprint.

Cite this