TY - JOUR
T1 - Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism
AU - Kandadi, Machender R.
AU - Hua, Yinan
AU - Ma, Heng
AU - Li, Qun
AU - Kuo, Shu Ru
AU - Frankel, Arthur E.
AU - Ren, Jun
PY - 2010/10/13
Y1 - 2010/10/13
N2 - Objectives: Anthrax infection is associated with devastating cardiovascular sequelae, suggesting unfavorable cardiovascular effects of toxins originated from Bacillus anthracis namely lethal and edema toxins. This study was designed to examine the direct effect of lethal toxins on cardiomyocyte contractile and intracellular Ca2+ properties. Methods: Murine cardiomyocyte contractile function and intracellular Ca2+ handling were evaluated including peak shortening (PS), maximal velocity of shortening/ relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ rise measured as fura-2 fluorescent intensity (ΔFFI), and intracellular Ca2+ decay rate. Stress signaling and Ca2+ regulatory proteins were assessed using Western blot analysis. Results: In vitro exposure to a lethal toxin (0.05 - 50 nM) elicited a concentration-dependent depression on cardiomyocyte contractile and intracellular Ca2+ properties (PS, ± dL/dt, ΔFFI), along with prolonged duration of contraction and intracellular Ca2+ decay, the effects of which were nullified by the NADPH oxidase inhibitor apocynin. The lethal toxin significantly enhanced superoxide production and cell death, which were reversed by apocynin. In vivo lethal toxin exposure exerted similar time-dependent cardiomyocyte mechanical and intracellular Ca2+ responses. Stress signaling cascades including MEK1/ 2, p38, ERK and JNK were unaffected by in vitro lethal toxins whereas they were significantly altered by in vivo lethal toxins. Ca2+ regulatory proteins SERCA2a and phospholamban were also differentially regulated by in vitro and in vivo lethal toxins. Autophagy was drastically triggered although ER stress was minimally affected following lethal toxin exposure. Conclusions: Our findings indicate that lethal toxins directly compromised murine cardiomyocyte contractile function and intracellular Ca2+ through a NADPH oxidase-dependent mechanism.
AB - Objectives: Anthrax infection is associated with devastating cardiovascular sequelae, suggesting unfavorable cardiovascular effects of toxins originated from Bacillus anthracis namely lethal and edema toxins. This study was designed to examine the direct effect of lethal toxins on cardiomyocyte contractile and intracellular Ca2+ properties. Methods: Murine cardiomyocyte contractile function and intracellular Ca2+ handling were evaluated including peak shortening (PS), maximal velocity of shortening/ relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ rise measured as fura-2 fluorescent intensity (ΔFFI), and intracellular Ca2+ decay rate. Stress signaling and Ca2+ regulatory proteins were assessed using Western blot analysis. Results: In vitro exposure to a lethal toxin (0.05 - 50 nM) elicited a concentration-dependent depression on cardiomyocyte contractile and intracellular Ca2+ properties (PS, ± dL/dt, ΔFFI), along with prolonged duration of contraction and intracellular Ca2+ decay, the effects of which were nullified by the NADPH oxidase inhibitor apocynin. The lethal toxin significantly enhanced superoxide production and cell death, which were reversed by apocynin. In vivo lethal toxin exposure exerted similar time-dependent cardiomyocyte mechanical and intracellular Ca2+ responses. Stress signaling cascades including MEK1/ 2, p38, ERK and JNK were unaffected by in vitro lethal toxins whereas they were significantly altered by in vivo lethal toxins. Ca2+ regulatory proteins SERCA2a and phospholamban were also differentially regulated by in vitro and in vivo lethal toxins. Autophagy was drastically triggered although ER stress was minimally affected following lethal toxin exposure. Conclusions: Our findings indicate that lethal toxins directly compromised murine cardiomyocyte contractile function and intracellular Ca2+ through a NADPH oxidase-dependent mechanism.
UR - http://www.scopus.com/inward/record.url?scp=78149420567&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78149420567&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0013335
DO - 10.1371/journal.pone.0013335
M3 - Article
C2 - 20967205
AN - SCOPUS:78149420567
SN - 1932-6203
VL - 5
JO - PLoS One
JF - PLoS One
IS - 10
M1 - e13335
ER -