TY - JOUR
T1 - Amino acids in the rat intestinal lumen regulate their own absorption from a distant intestinal site
AU - Mourad, Fadi H.
AU - Barada, Kassem A.
AU - Khoury, Carmen
AU - Hamdi, Tamim
AU - Saadé, Nayef E.
AU - Nassar, Camille F.
PY - 2009/8
Y1 - 2009/8
N2 - Intestinal nutrient transport is altered in response to changes in dietary conditions and luminal substrate level. It is not clear, however, whether an amino acid in the intestinal lumen can acutely affect its own absorption from a distant site. Our aim is to study the effect of an amino acid present in rat small intestinal segment on its own absorption from a proximal or distal site and elucidate the underlying mechanisms. The effect of instillation of alanine (Ala) in either jejunum or ileum on its own absorption at ileal or jejunal level was examined in vivo. The modulation of this intestinal regulatory loop by the following interventions was studied: tetrodotoxin (TTX) added to Ala, subdiaphragmatic vagotomy, chemical ablation of capsaicin-sensitive primary afferent (CSPA) fibers, and IV administration of calcitonin gene-related peptide (CGRP) antagonist. In addition, the kinetics of jejunal Ala absorption and the importance of Na+-dependent transport were studied in vitro after instilling Ala in the ileum. Basal jejunal Ala absorption [0.198 ± 0.018 μmol·cm-1 ·20 min-1 (means ± SD)] was significantly decreased with the instillation of 20 mM Ala in the ileum or in an adjacent distal jejunal segment (0.12 ± 0.015; P < 0.0001 and 0.138 ± 0.014; P < 0.002, respectively). Comparable inhibition was observed in the presence of proline in the ileum. Moreover, basal Ala absorption from the ileum (0.169 ± 0.025) was significantly decreased by the presence of 20 mM Ala in the jejunum (0.103 ± 0.027; P < 0.01). The inhibitory effect on jejunal Ala absorption was abolished by TTX, subdiaphragmatic vagotomy, neonatal capsaicin treatment, and CGRP antagonism. In vitro studies showed that Ala in the ileum affects Na+-mediated transport and increases Km without affecting Vmax. Intraluminal amino acids control their own absorption from a distant part of the intestine, by affecting the affinity of the Na+-mediated Ala transporter, through a neuronal mechanism that involves CSPA and CGRP.
AB - Intestinal nutrient transport is altered in response to changes in dietary conditions and luminal substrate level. It is not clear, however, whether an amino acid in the intestinal lumen can acutely affect its own absorption from a distant site. Our aim is to study the effect of an amino acid present in rat small intestinal segment on its own absorption from a proximal or distal site and elucidate the underlying mechanisms. The effect of instillation of alanine (Ala) in either jejunum or ileum on its own absorption at ileal or jejunal level was examined in vivo. The modulation of this intestinal regulatory loop by the following interventions was studied: tetrodotoxin (TTX) added to Ala, subdiaphragmatic vagotomy, chemical ablation of capsaicin-sensitive primary afferent (CSPA) fibers, and IV administration of calcitonin gene-related peptide (CGRP) antagonist. In addition, the kinetics of jejunal Ala absorption and the importance of Na+-dependent transport were studied in vitro after instilling Ala in the ileum. Basal jejunal Ala absorption [0.198 ± 0.018 μmol·cm-1 ·20 min-1 (means ± SD)] was significantly decreased with the instillation of 20 mM Ala in the ileum or in an adjacent distal jejunal segment (0.12 ± 0.015; P < 0.0001 and 0.138 ± 0.014; P < 0.002, respectively). Comparable inhibition was observed in the presence of proline in the ileum. Moreover, basal Ala absorption from the ileum (0.169 ± 0.025) was significantly decreased by the presence of 20 mM Ala in the jejunum (0.103 ± 0.027; P < 0.01). The inhibitory effect on jejunal Ala absorption was abolished by TTX, subdiaphragmatic vagotomy, neonatal capsaicin treatment, and CGRP antagonism. In vitro studies showed that Ala in the ileum affects Na+-mediated transport and increases Km without affecting Vmax. Intraluminal amino acids control their own absorption from a distant part of the intestine, by affecting the affinity of the Na+-mediated Ala transporter, through a neuronal mechanism that involves CSPA and CGRP.
KW - Control of amino acid absorption
KW - Enteric nervous system
KW - Intestinointestinal reflex
UR - http://www.scopus.com/inward/record.url?scp=68049085865&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68049085865&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00100.2009
DO - 10.1152/ajpgi.00100.2009
M3 - Article
C2 - 19541927
AN - SCOPUS:68049085865
SN - 0363-6135
VL - 297
SP - G292-G298
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 2
ER -