TY - JOUR
T1 - Adiponectin protects rat myocardium against chronic intermittent hypoxia-induced injury via inhibition of endoplasmic reticulum stress
AU - Ding, Wenxiao
AU - Zhang, Xiaofeng
AU - Huang, Hanpeng
AU - Ding, Ning
AU - Zhang, Shijiang
AU - Hutchinson, Sean Z.
AU - Zhang, Xilong
PY - 2014/4/9
Y1 - 2014/4/9
N2 - Obstructive sleep apnea syndrome (OSAS) is associated with many cardiovascular disorders such as heart failure, hypertension, atherosclerosis, and arrhythmia and so on. Of the many associated factors, chronic intermittent hypoxia (CIH) in particular is the primary player in OSAS. To assess the effects of CIH on cardiac function secondary to OSAS, we established a model to study the effects of CIH on Wistar rats. Specifically, we examined the possible underlying cellular mechanisms of hypoxic tissue damage and the possible protective role of adiponectin against hypoxic insults. In the first treatment group, rats were exposed to CIH conditions (nadir O2, 5-6%) for 8 hours/day, for 5 weeks. Subsequent CIHinduced cardiac dysfunction was measured by echocardiograph. Compared with the normal control (NC) group, rats in the CIH-exposed group experienced elevated levels of left ventricular end-systolic dimension and left ventricular end-systolic volume and depressed levels of left ventricular ejection fraction and left ventricular fractional shortening (p<0.05). However, when adiponectin (Ad) was added in CIH + Ad group, we saw a rescue in the elevations of the aforementioned left ventricular function (p<0.05). To assess critical cardiac injury, we detected myocardial apoptosis by Terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) analysis. It was showed that the apoptosis percentage in CIH group (2.948%) was significantly higher than that in NC group (0.4167%) and CIH + Ad group (1.219%) (p<0.05). Protein expressions of cleaved caspase-3, cleaved caspase-9, and cleaved-caspase-12 validated our TUNEL results (p<0.05). Mechanistically, our results demonstrated that the proteins expressed with endoplasmic reticulum stress and the expression of reactive oxygen species (ROS) were significantly elevated under CIH conditions, whereas Ad supplementation partially decreased them. Overall, our results suggested that Ad augmentation could improve CIH-induced left ventricular dysfunction and associated myocardial apoptosis by inhibition of ROS-dependent ER stress.
AB - Obstructive sleep apnea syndrome (OSAS) is associated with many cardiovascular disorders such as heart failure, hypertension, atherosclerosis, and arrhythmia and so on. Of the many associated factors, chronic intermittent hypoxia (CIH) in particular is the primary player in OSAS. To assess the effects of CIH on cardiac function secondary to OSAS, we established a model to study the effects of CIH on Wistar rats. Specifically, we examined the possible underlying cellular mechanisms of hypoxic tissue damage and the possible protective role of adiponectin against hypoxic insults. In the first treatment group, rats were exposed to CIH conditions (nadir O2, 5-6%) for 8 hours/day, for 5 weeks. Subsequent CIHinduced cardiac dysfunction was measured by echocardiograph. Compared with the normal control (NC) group, rats in the CIH-exposed group experienced elevated levels of left ventricular end-systolic dimension and left ventricular end-systolic volume and depressed levels of left ventricular ejection fraction and left ventricular fractional shortening (p<0.05). However, when adiponectin (Ad) was added in CIH + Ad group, we saw a rescue in the elevations of the aforementioned left ventricular function (p<0.05). To assess critical cardiac injury, we detected myocardial apoptosis by Terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) analysis. It was showed that the apoptosis percentage in CIH group (2.948%) was significantly higher than that in NC group (0.4167%) and CIH + Ad group (1.219%) (p<0.05). Protein expressions of cleaved caspase-3, cleaved caspase-9, and cleaved-caspase-12 validated our TUNEL results (p<0.05). Mechanistically, our results demonstrated that the proteins expressed with endoplasmic reticulum stress and the expression of reactive oxygen species (ROS) were significantly elevated under CIH conditions, whereas Ad supplementation partially decreased them. Overall, our results suggested that Ad augmentation could improve CIH-induced left ventricular dysfunction and associated myocardial apoptosis by inhibition of ROS-dependent ER stress.
UR - http://www.scopus.com/inward/record.url?scp=84899525703&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899525703&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0094545
DO - 10.1371/journal.pone.0094545
M3 - Article
C2 - 24718591
AN - SCOPUS:84899525703
SN - 1932-6203
VL - 9
JO - PLoS One
JF - PLoS One
IS - 4
M1 - e94545
ER -