A unique redox-sensing sensor II motif in torsina plays a critical role in nucleotide and partner binding

Li Zhu, Linda Millen, Juan L. Mendoza, Philip J. Thomas

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Early onset dystonia is commonly associated with the deletion of one of a pair of glutamate residues (ΔE302/303) near the C terminus of torsinA, a member of the AAA+ protein family (ATPases associated with a variety of cellular activities) located in the endoplasmic reticulum lumen. The functional consequences of the disease-causing mutation, ΔE, are not currently understood. By contrast to other AAA+ proteins, torsin proteins contain two conserved cysteine residues in the C-terminal domain, one of which is located in the nucleotide sensor II motif. Depending on redox status, an ATP hydrolysis mutant of torsinA interacts with lamina-associated polypeptide 1 (LAP1) and lumenal domain like LAP1 (LULL1). Substitution of the cysteine in sensor II diminishes the redox-regulated interaction of torsinA with these substrates. Significantly, the dystonia-causing mutation, ΔE, alters the ability of torsinA to mediate the redox-regulated interactions with LAP1 and LULL1. Limited proteolysis experiments reveal redox- and mutation-dependent changes in the local conformation of torsinA as a function of nucleotide binding. These results indicate that the cysteine-containing sensor II plays a critical role in redox sensing and the nucleotide and partner binding functions of torsin and suggest that loss of this function of torsinA contributes to the development of DYT1 dystonia.

Original languageEnglish (US)
Pages (from-to)37271-37280
Number of pages10
JournalJournal of Biological Chemistry
Volume285
Issue number48
DOIs
StatePublished - Nov 26 2010

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'A unique redox-sensing sensor II motif in torsina plays a critical role in nucleotide and partner binding'. Together they form a unique fingerprint.

Cite this