A novel role of MNT as a negative regulator of REL and the NF-κB pathway

Judit Liaño-Pons, M. Carmen Lafita-Navarro, Lorena García-Gaipo, Carlota Colomer, Javier Rodríguez, Alex von Kriegsheim, Peter J. Hurlin, Fabiana Ourique, M. Dolores Delgado, Anna Bigas, M. Lluis Espinosa, Javier León

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix–loop–helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT–REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT–REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.

Original languageEnglish (US)
Article number5
Issue number1
StatePublished - Jan 2021

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research


Dive into the research topics of 'A novel role of MNT as a negative regulator of REL and the NF-κB pathway'. Together they form a unique fingerprint.

Cite this