A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordinates the transition from an oocyte to an embryo in C. elegans, but regulated turnover of oocyte-specific proteins contributes to the process. We describe here a gain-of-function mutation (zu405) in a gene that is essential for oocyte maturation, oma-1. In wild type animals, OMA-1 protein is expressed at a high level exclusively in oocytes and newly fertilized embryos and is degraded rapidly after the first mitotic division. The zu405 mutation results in improper degradation of the OMA-1 protein in embryos. In oma-1(zu405) embryos, the C blastomere is transformed to the EMS blastomere fate, resulting in embryonic lethality. We show that degradation of several maternally supplied cell fate determinants, including SKN-1, PIE-1, MEX-3, and MEX-5, is delayed in oma-1(zu405) mutant embryos. In wild type embryos, SKN-1 functions in EMS for EMS blastomere fate specification. A decreased level of maternal SKN-1 protein in the C blastomere relative to EMS is believed to be responsible for this cell expressing the C, instead of the EMS, fate. Delayed degradation of maternal SKN-1 protein in oma-1(zu405) embryos and resultant elevated levels in C blastomere is likely responsible for the observed C-to-EMS blastomere fate transformation. These observations suggest that oma-1, in addition to its role in oocyte maturation, contributes to early embryonic development by regulating the temporal degradation of maternal proteins in early C. elegans embryos.

Original languageEnglish (US)
Pages (from-to)226-239
Number of pages14
JournalDevelopmental Biology
Volume258
Issue number1
DOIs
StatePublished - Jun 1 2003

Keywords

  • C. elegans
  • Embryo
  • Fate transformation
  • Gain-of-function
  • Oma-1
  • Protein degradation
  • SKN-1

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality'. Together they form a unique fingerprint.

Cite this