Abstract
Non-invasive detection of prostate cancer or metastases still remains a challenge in the field of molecular imaging. In our recent work of screening arginine- or lysine-rich peptides for intracellular delivery of a therapeutic agent into prostate cancer cells, an arginine-rich cell permeable peptide (NH2GR11) was found with an unexpectedly preferential uptake in prostate cancer cell lines. The goal of this work was to develop this peptide as a positron emission tomography (PET) imaging probe for specific detection of distant prostate cancer metastases. The optimal length of arginine-rich peptides was evaluated by the cell uptake efficiency of three fluorescein isothiocyanate (FITC)-tagged oligoarginines (NHGR9, NHGR11, and NHGR13) in four human prostate cell lines (LNCaP, PZHPV- 7, DU145, and PC3). Of the three oligoarginines, NH 2GR11 showed the highest cell uptake and internalization efficiency with its subcellular localization in cytosol. The biodistribution of FITC-NHGR9, FITC-NHGR11, and FITC-NHGR13 performed in control nude mice displayed the unique preferential accumulation of FITC-NHGR11 in the prostate tissue. Further in vivo evaluation of FITCNHGR11 in PC3 tumor-bearing nude mice revealed elevated uptake of this peptide in tumors as compared to other organs. In vivo pharmacokinetics evaluated with 64Cu-labeled NH2GR11 showed that the peptide was rapidly cleared from the blood (t1/2 = 10.7 min) and its elimination half-life was 17.2 h. The PET imaging specificity of 64Cu-labled NH2GR11 was demonstrated for the detection of prostate cancer in a comparative imaging experiment using two different human cancer xenograft models.
Original language | English (US) |
---|---|
Pages (from-to) | 1093-1101 |
Number of pages | 9 |
Journal | Amino Acids |
Volume | 41 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2011 |
Keywords
- Cell permeable peptide
- Cu
- PET
- Prostate cancer
ASJC Scopus subject areas
- Biochemistry
- Clinical Biochemistry
- Organic Chemistry